These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
133 related articles for article (PubMed ID: 34875330)
1. Effect of Pseudomonas putida-producing pyoverdine on copper uptake by Helianthus annuus cultivated on vineyard soils. Emmeline D; Alexandra L; Hervé C; Pierre G; Jean-Yves C; Thierry L Sci Total Environ; 2022 Feb; 809():152113. PubMed ID: 34875330 [TBL] [Abstract][Full Text] [Related]
2. Copper phytoavailability in vineyard topsoils as affected by pyoverdine supply. Cornu JY; Randriamamonjy S; Gutierrez M; Rocco K; Gaudin P; Ouerdane L; Lebeau T Chemosphere; 2019 Dec; 236():124347. PubMed ID: 31310975 [TBL] [Abstract][Full Text] [Related]
3. The effect of Cu-resistant plant growth-promoting rhizobacteria and EDTA on phytoremediation efficiency of plants in a Cu-contaminated soil. Abbaszadeh-Dahaji P; Baniasad-Asgari A; Hamidpour M Environ Sci Pollut Res Int; 2019 Nov; 26(31):31822-31833. PubMed ID: 31487012 [TBL] [Abstract][Full Text] [Related]
4. Bioaugmentation with copper tolerant endophyte Pseudomonas lurida strain EOO26 for improved plant growth and copper phytoremediation by Helianthus annuus. Kumar A; Tripti ; Voropaeva O; Maleva M; Panikovskaya K; Borisova G; Rajkumar M; Bruno LB Chemosphere; 2021 Mar; 266():128983. PubMed ID: 33272662 [TBL] [Abstract][Full Text] [Related]
5. Contrasting effects of pyoverdine on the phytoextraction of Cu and Cd in a calcareous soil. Cornu JY; Elhabiri M; Ferret C; Geoffroy VA; Jezequel K; Leva Y; Lollier M; Schalk IJ; Lebeau T Chemosphere; 2014 May; 103():212-9. PubMed ID: 24359916 [TBL] [Abstract][Full Text] [Related]
6. Synergistic effect of ACC deaminase producing Pseudomonas sp. TR15a and siderophore producing Bacillus aerophilus TR15c for enhanced growth and copper accumulation in Helianthus annuus L. Kumar A; Tripti ; Maleva M; Bruno LB; Rajkumar M Chemosphere; 2021 Aug; 276():130038. PubMed ID: 33690033 [TBL] [Abstract][Full Text] [Related]
7. Ability of aerated compost tea to increase the mobility and phytoextraction of copper in vineyard soil. Eon P; Deogratias JM; Robert T; Coriou C; Bussiere S; Sappin-Didier V; Denaix L; Cornu JY J Environ Manage; 2023 Jan; 325(Pt B):116560. PubMed ID: 36279772 [TBL] [Abstract][Full Text] [Related]
8. Aided phytoextraction of Cu, Pb, Zn, and As in copper-contaminated soils with tobacco and sunflower in crop rotation: Mobility and phytoavailability assessment. Hattab-Hambli N; Motelica-Heino M; Mench M Chemosphere; 2016 Feb; 145():543-50. PubMed ID: 26706463 [TBL] [Abstract][Full Text] [Related]
9. Enhanced phytoextraction: II. Effect of EDTA and citric acid on heavy metal uptake by Helianthus annuus from a calcareous soil. Lesage E; Meers E; Vervaeke P; Lamsal S; Hopgood M; Tack FM; Verloo MG Int J Phytoremediation; 2005; 7(2):143-52. PubMed ID: 16128445 [TBL] [Abstract][Full Text] [Related]
10. Effect of Pseudomonas fluorescens and pyoverdine on the phytoextraction of cesium by red clover in soil pots and hydroponics. Hazotte A; Péron O; Gaudin P; Abdelouas A; Lebeau T Environ Sci Pollut Res Int; 2018 Jul; 25(21):20680-20690. PubMed ID: 29752674 [TBL] [Abstract][Full Text] [Related]
11. Mitigation of Copper Stress in Maize (Zea mays) and Sunflower (Helianthus annuus) Plants by Copper-resistant Pseudomonas Strains. Abbaszadeh-Dahaji P; Atajan FA; Omidvari M; Tahan V; Kariman K Curr Microbiol; 2021 Apr; 78(4):1335-1343. PubMed ID: 33646377 [TBL] [Abstract][Full Text] [Related]
12. Bacterial stimulation of copper phytoaccumulation by bioaugmentation with rhizosphere bacteria. Andreazza R; Okeke BC; Lambais MR; Bortolon L; de Melo GW; Camargo FA Chemosphere; 2010 Nov; 81(9):1149-54. PubMed ID: 20937516 [TBL] [Abstract][Full Text] [Related]
13. The effect of soil bioaugmentation with strains of Pseudomonas on Cd, Zn and Cu uptake by Sinapis alba L. Płociniczak T; Kukla M; Wątroba R; Piotrowska-Seget Z Chemosphere; 2013 May; 91(9):1332-7. PubMed ID: 23561856 [TBL] [Abstract][Full Text] [Related]
14. Enhanced accumulation of copper and lead in amaranth (Amaranthus paniculatus), Indian mustard (Brassica juncea) and sunflower (Helianthus annuus). Rahman MM; Azirun SM; Boyce AN PLoS One; 2013; 8(5):e62941. PubMed ID: 23667546 [TBL] [Abstract][Full Text] [Related]
15. Copper-resistant bacteria enhance plant growth and copper phytoextraction. Yang R; Luo C; Chen Y; Wang G; Xu Y; Shen Z Int J Phytoremediation; 2013; 15(6):573-84. PubMed ID: 23819298 [TBL] [Abstract][Full Text] [Related]
16. Copper phytoextraction in tandem with oilseed production using commercial cultivars and mutant lines of sunflower. Kolbas A; Mench M; Herzig R; Nehnevajova E; Bes CM Int J Phytoremediation; 2011; 13 Suppl 1():55-76. PubMed ID: 22046751 [TBL] [Abstract][Full Text] [Related]
17. Arbuscular mycorrhizal fungi alleviate the heavy metal toxicity on sunflower (Helianthus annuus L.) plants cultivated on a heavily contaminated field soil at a WEEE-recycling site. Zhang Y; Hu J; Bai J; Wang J; Yin R; Wang J; Lin X Sci Total Environ; 2018 Jul; 628-629():282-290. PubMed ID: 29438937 [TBL] [Abstract][Full Text] [Related]
18. Advantages and limits to copper phytoextraction in vineyards. Cornu JY; Waterlot C; Lebeau T Environ Sci Pollut Res Int; 2022 Apr; 29(20):29226-29235. PubMed ID: 33754268 [TBL] [Abstract][Full Text] [Related]
19. Phytoremediation potential of castor (Ricinus communis L.) in the soils of the abandoned copper mine in Northern Oman: implications for arid regions. Palanivel TM; Pracejus B; Victor R Environ Sci Pollut Res Int; 2020 May; 27(14):17359-17369. PubMed ID: 32157545 [TBL] [Abstract][Full Text] [Related]
20. Brevundimonas diminuta MYS6 associated Helianthus annuus L. for enhanced copper phytoremediation. Rathi M; K N Y Chemosphere; 2021 Jan; 263():128195. PubMed ID: 33297160 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]