BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1398 related articles for article (PubMed ID: 34875360)

  • 1. Embedded bioprinting for designer 3D tissue constructs with complex structural organization.
    Zeng X; Meng Z; He J; Mao M; Li X; Chen P; Fan J; Li D
    Acta Biomater; 2022 Mar; 140():1-22. PubMed ID: 34875360
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Advancing bioinks for 3D bioprinting using reactive fillers: A review.
    Heid S; Boccaccini AR
    Acta Biomater; 2020 Sep; 113():1-22. PubMed ID: 32622053
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Advances in tissue engineering of vasculature through three-dimensional bioprinting.
    Zhu J; Wang Y; Zhong L; Pan F; Wang J
    Dev Dyn; 2021 Dec; 250(12):1717-1738. PubMed ID: 34115420
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bioprinting for vascular and vascularized tissue biofabrication.
    Datta P; Ayan B; Ozbolat IT
    Acta Biomater; 2017 Mar; 51():1-20. PubMed ID: 28087487
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A dive into the bath: embedded 3D bioprinting of freeform
    Öztürk-Öncel MÖ; Leal-Martínez BH; Monteiro RF; Gomes ME; Domingues RMA
    Biomater Sci; 2023 Aug; 11(16):5462-5473. PubMed ID: 37489648
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydrogels for 3D embedded bioprinting: a focused review on bioinks and support baths.
    Zhou K; Sun Y; Yang J; Mao H; Gu Z
    J Mater Chem B; 2022 Mar; 10(12):1897-1907. PubMed ID: 35212327
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Collagen-based bioinks for hard tissue engineering applications: a comprehensive review.
    Marques CF; Diogo GS; Pina S; Oliveira JM; Silva TH; Reis RL
    J Mater Sci Mater Med; 2019 Mar; 30(3):32. PubMed ID: 30840132
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bioprinting 101: Design, Fabrication, and Evaluation of Cell-Laden 3D Bioprinted Scaffolds.
    Deo KA; Singh KA; Peak CW; Alge DL; Gaharwar AK
    Tissue Eng Part A; 2020 Mar; 26(5-6):318-338. PubMed ID: 32079490
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Embedded 3D Bioprinting for Engineering Miniaturized In Vitro Tumor Models.
    Monteiro MV; Rocha M; Gaspar VM; Mano JF
    Methods Mol Biol; 2024; 2764():279-288. PubMed ID: 38393601
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-resolution electrohydrodynamic bioprinting: a new biofabrication strategy for biomimetic micro/nanoscale architectures and living tissue constructs.
    He J; Zhang B; Li Z; Mao M; Li J; Han K; Li D
    Biofabrication; 2020 Jul; 12(4):042002. PubMed ID: 32615543
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tunable and Compartmentalized Multimaterial Bioprinting for Complex Living Tissue Constructs.
    Hassan S; Gomez-Reyes E; Enciso-Martinez E; Shi K; Campos JG; Soria OYP; Luna-Cerón E; Lee MC; Garcia-Reyes I; Steakelum J; Jeelani H; García-Rivera LE; Cho M; Cortes SS; Kamperman T; Wang H; Leijten J; Fiondella L; Shin SR
    ACS Appl Mater Interfaces; 2022 Nov; 14(46):51602-51618. PubMed ID: 36346873
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 3D printing of functional biomaterials for tissue engineering.
    Zhu W; Ma X; Gou M; Mei D; Zhang K; Chen S
    Curr Opin Biotechnol; 2016 Aug; 40():103-112. PubMed ID: 27043763
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multimaterial bioprinting and combination of processing techniques towards the fabrication of biomimetic tissues and organs.
    Tavafoghi M; Darabi MA; Mahmoodi M; Tutar R; Xu C; Mirjafari A; Billi F; Swieszkowski W; Nasrollahi F; Ahadian S; Hosseini V; Khademhosseini A; Ashammakhi N
    Biofabrication; 2021 Aug; 13(4):. PubMed ID: 34130266
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Converging functionality: Strategies for 3D hybrid-construct biofabrication and the role of composite biomaterials for skeletal regeneration.
    Alcala-Orozco CR; Cui X; Hooper GJ; Lim KS; Woodfield TBF
    Acta Biomater; 2021 Sep; 132():188-216. PubMed ID: 33713862
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hybrid printing of mechanically and biologically improved constructs for cartilage tissue engineering applications.
    Xu T; Binder KW; Albanna MZ; Dice D; Zhao W; Yoo JJ; Atala A
    Biofabrication; 2013 Mar; 5(1):015001. PubMed ID: 23172542
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exploiting the role of nanoparticles for use in hydrogel-based bioprinting applications: concept, design, and recent advances.
    Chakraborty A; Roy A; Ravi SP; Paul A
    Biomater Sci; 2021 Sep; 9(19):6337-6354. PubMed ID: 34397056
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Volumetric Printing Across Melt Electrowritten Scaffolds Fabricates Multi-Material Living Constructs with Tunable Architecture and Mechanics.
    Größbacher G; Bartolf-Kopp M; Gergely C; Bernal PN; Florczak S; de Ruijter M; Rodriguez NG; Groll J; Malda J; Jungst T; Levato R
    Adv Mater; 2023 Aug; 35(32):e2300756. PubMed ID: 37099802
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design and Printing Strategies in 3D Bioprinting of Cell-Hydrogels: A Review.
    Lee JM; Yeong WY
    Adv Healthc Mater; 2016 Nov; 5(22):2856-2865. PubMed ID: 27767258
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cation-crosslinked
    Zhang H; Luo Y; Hu Z; Chen M; Chen S; Yao Y; Yao J; Shao X; Wu K; Zhu Y; Fu J
    Biofabrication; 2024 Feb; 16(2):. PubMed ID: 38198708
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biomaterials in bone and mineralized tissue engineering using 3D printing and bioprinting technologies.
    Rahimnejad M; Rezvaninejad R; Rezvaninejad R; França R
    Biomed Phys Eng Express; 2021 Oct; 7(6):. PubMed ID: 34438382
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 70.