These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
184 related articles for article (PubMed ID: 34875470)
1. The osteogenic effects of porous Tantalum and Titanium alloy scaffolds with different unit cell structure. Huang G; Pan ST; Qiu JX Colloids Surf B Biointerfaces; 2022 Feb; 210():112229. PubMed ID: 34875470 [TBL] [Abstract][Full Text] [Related]
2. Comparison of 3D-printed porous tantalum and titanium scaffolds on osteointegration and osteogenesis. Wang H; Su K; Su L; Liang P; Ji P; Wang C Mater Sci Eng C Mater Biol Appl; 2019 Nov; 104():109908. PubMed ID: 31499974 [TBL] [Abstract][Full Text] [Related]
3. Study of Bone Regeneration and Osteointegration Effect of a Novel Selective Laser-Melted Titanium-Tantalum-Niobium-Zirconium Alloy Scaffold. Guo Y; Wu J; Xie K; Tan J; Yang Y; Zhao S; Wang L; Jiang W; Hao Y ACS Biomater Sci Eng; 2019 Dec; 5(12):6463-6473. PubMed ID: 33417799 [TBL] [Abstract][Full Text] [Related]
4. Atomic Layer Deposition of Tantalum Oxide Films on 3D-Printed Ti6Al4V Scaffolds with Enhanced Osteogenic Property for Orthopedic Implants. Zhang X; Guan S; Qiu J; Qiao Y; Qian S; Tan J; Yeung KWK; Liu X ACS Biomater Sci Eng; 2023 Jul; 9(7):4197-4207. PubMed ID: 37378535 [TBL] [Abstract][Full Text] [Related]
5. In Vitro and in Vivo Study of 3D-Printed Porous Tantalum Scaffolds for Repairing Bone Defects. Guo Y; Xie K; Jiang W; Wang L; Li G; Zhao S; Wu W; Hao Y ACS Biomater Sci Eng; 2019 Feb; 5(2):1123-1133. PubMed ID: 33405802 [TBL] [Abstract][Full Text] [Related]
6. Influence of porous tantalum scaffold pore size on osteogenesis and osteointegration: A comprehensive study based on 3D-printing technology. Luo C; Wang C; Wu X; Xie X; Wang C; Zhao C; Zou C; Lv F; Huang W; Liao J Mater Sci Eng C Mater Biol Appl; 2021 Oct; 129():112382. PubMed ID: 34579901 [TBL] [Abstract][Full Text] [Related]
7. Precision pore structure optimization of additive manufacturing porous tantalum scaffolds for bone regeneration: A proof-of-concept study. Jin J; Wang D; Qian H; Ruan C; Yang Y; Li D; Wang G; Zhu X; Hu Y; Lei P Biomaterials; 2025 Feb; 313():122756. PubMed ID: 39182327 [TBL] [Abstract][Full Text] [Related]
8. Influence of the pore size and porosity of selective laser melted Ti6Al4V ELI porous scaffold on cell proliferation, osteogenesis and bone ingrowth. Chen Z; Yan X; Yin S; Liu L; Liu X; Zhao G; Ma W; Qi W; Ren Z; Liao H; Liu M; Cai D; Fang H Mater Sci Eng C Mater Biol Appl; 2020 Jan; 106():110289. PubMed ID: 31753386 [TBL] [Abstract][Full Text] [Related]
9. In Vitro and In Vivo Analysis of the Effects of 3D-Printed Porous Titanium Alloy Scaffold Structure on Osteogenic Activity. Xu Z; Zhang Y; Wu Y; Zhang Z; Jiang D; Jia R; Wang X; Liu Z Biomed Res Int; 2022; 2022():8494431. PubMed ID: 35996542 [TBL] [Abstract][Full Text] [Related]
10. Porous tantalum structure integrated on Ti6Al4V base by Laser Powder Bed Fusion for enhanced bony-ingrowth implants: In vitro and in vivo validation. Lei P; Qian H; Zhang T; Lei T; Hu Y; Chen C; Zhou K Bioact Mater; 2022 Jan; 7():3-13. PubMed ID: 34430760 [TBL] [Abstract][Full Text] [Related]
11. Intrinsic Surface Effects of Tantalum and Titanium on Integrin α5β1/ ERK1/2 Pathway-Mediated Osteogenic Differentiation in Rat Bone Mesenchymal Stromal Cells. Lu M; Zhuang X; Tang K; Wu P; Guo X; Yin L; Cao H; Zou D Cell Physiol Biochem; 2018; 51(2):589-609. PubMed ID: 30458456 [TBL] [Abstract][Full Text] [Related]
12. Fatigue behavior of As-built selective laser melted titanium scaffolds with sheet-based gyroid microarchitecture for bone tissue engineering. Kelly CN; Francovich J; Julmi S; Safranski D; Guldberg RE; Maier HJ; Gall K Acta Biomater; 2019 Aug; 94():610-626. PubMed ID: 31125727 [TBL] [Abstract][Full Text] [Related]
13. Improving osteoinduction and osteogenesis of Ti6Al4V alloy porous scaffold by regulating the pore structure. Wang C; Wu J; Liu L; Xu D; Liu Y; Li S; Hou W; Wang J; Chen X; Sheng L; Lin H; Yu D Front Chem; 2023; 11():1190630. PubMed ID: 37265590 [TBL] [Abstract][Full Text] [Related]
14. Osteogenesis of 3D printed porous Ti6Al4V implants with different pore sizes. Ran Q; Yang W; Hu Y; Shen X; Yu Y; Xiang Y; Cai K J Mech Behav Biomed Mater; 2018 Aug; 84():1-11. PubMed ID: 29709846 [TBL] [Abstract][Full Text] [Related]
15. Selective Laser Melting of the Porous Ta Scaffold with Mg-Doped Calcium Phosphate Coating for Orthopedic Applications. Xu J; Wu D; Ge B; Li M; Yu H; Cao F; Wang W; Zhang Q; Yi P; Wang H; Song L; Liu L; Li J; Zhao D ACS Biomater Sci Eng; 2024 Mar; 10(3):1435-1447. PubMed ID: 38330203 [TBL] [Abstract][Full Text] [Related]
16. 3D-printed porous Ti6Al4V scaffolds for long bone repair in animal models: a systematic review. Gu Y; Sun Y; Shujaat S; Braem A; Politis C; Jacobs R J Orthop Surg Res; 2022 Feb; 17(1):68. PubMed ID: 35109907 [TBL] [Abstract][Full Text] [Related]
17. Immobilizing magnesium ions on 3D printed porous tantalum scaffolds with polydopamine for improved vascularization and osteogenesis. Ma L; Cheng S; Ji X; Zhou Y; Zhang Y; Li Q; Tan C; Peng F; Zhang Y; Huang W Mater Sci Eng C Mater Biol Appl; 2020 Dec; 117():111303. PubMed ID: 32919664 [TBL] [Abstract][Full Text] [Related]
18. Schwann Cell-derived exosomes promote bone regeneration and repair by enhancing the biological activity of porous Ti6Al4V scaffolds. Wu Z; Pu P; Su Z; Zhang X; Nie L; Chang Y Biochem Biophys Res Commun; 2020 Oct; 531(4):559-565. PubMed ID: 32811642 [TBL] [Abstract][Full Text] [Related]
19. Combined Effects of Polydopamine-Assisted Copper Immobilization on 3D-Printed Porous Ti6Al4V Scaffold for Angiogenic and Osteogenic Bone Regeneration. Wu HY; Lin YH; Lee AK; Kuo TY; Tsai CH; Shie MY Cells; 2022 Sep; 11(18):. PubMed ID: 36139399 [TBL] [Abstract][Full Text] [Related]
20. Ti6Ta4Sn alloy and subsequent scaffolding for bone tissue engineering. Li Y; Xiong J; Wong CS; Hodgson PD; Wen C Tissue Eng Part A; 2009 Oct; 15(10):3151-9. PubMed ID: 19351266 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]