These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
184 related articles for article (PubMed ID: 34875470)
21. In vitro and in vivo comparisons of the porous Ti6Al4V alloys fabricated by the selective laser melting technique and a new sintering technique. Li J; Li Z; Shi Y; Wang H; Li R; Tu J; Jin G J Mech Behav Biomed Mater; 2019 Mar; 91():149-158. PubMed ID: 30579112 [TBL] [Abstract][Full Text] [Related]
22. Influence of porosity on osteogenesis, bone growth and osteointegration in trabecular tantalum scaffolds fabricated by additive manufacturing. Jiao J; Hong Q; Zhang D; Wang M; Tang H; Yang J; Qu X; Yue B Front Bioeng Biotechnol; 2023; 11():1117954. PubMed ID: 36777251 [TBL] [Abstract][Full Text] [Related]
23. Tantalum coating on porous Ti6Al4V scaffold using chemical vapor deposition and preliminary biological evaluation. Li X; Wang L; Yu X; Feng Y; Wang C; Yang K; Su D Mater Sci Eng C Mater Biol Appl; 2013 Jul; 33(5):2987-94. PubMed ID: 23623123 [TBL] [Abstract][Full Text] [Related]
24. Mechanical behavior of a titanium alloy scaffold mimicking trabecular structure. Zhang C; Zhang L; Liu L; Lv L; Gao L; Liu N; Wang X; Ye J J Orthop Surg Res; 2020 Feb; 15(1):40. PubMed ID: 32028970 [TBL] [Abstract][Full Text] [Related]
25. 3D porous Ti6Al4V-beta-tricalcium phosphate scaffolds directly fabricated by additive manufacturing. Li J; Yuan H; Chandrakar A; Moroni L; Habibovic P Acta Biomater; 2021 May; 126():496-510. PubMed ID: 33727193 [TBL] [Abstract][Full Text] [Related]
26. Large-pore-size Ti6Al4V scaffolds with different pore structures for vascularized bone regeneration. Wang C; Xu D; Lin L; Li S; Hou W; He Y; Sheng L; Yi C; Zhang X; Li H; Li Y; Zhao W; Yu D Mater Sci Eng C Mater Biol Appl; 2021 Dec; 131():112499. PubMed ID: 34857285 [TBL] [Abstract][Full Text] [Related]
27. Laser powder bed fusion of titanium-tantalum alloys: Compositions and designs for biomedical applications. Huang S; Sing SL; de Looze G; Wilson R; Yeong WY J Mech Behav Biomed Mater; 2020 Aug; 108():103775. PubMed ID: 32469713 [TBL] [Abstract][Full Text] [Related]
28. Tantalum-incorporated hydroxyapatite coating on titanium implants: its mechanical and in vitro osteogenic properties. Lu RJ; Wang X; He HX; E LL; Li Y; Zhang GL; Li CJ; Ning CY; Liu HC J Mater Sci Mater Med; 2019 Oct; 30(10):111. PubMed ID: 31583537 [TBL] [Abstract][Full Text] [Related]
29. Tantalum-coated pedicle screws enhance implant integration. Shi LY; Wang A; Zang FZ; Wang JX; Pan XW; Chen HJ Colloids Surf B Biointerfaces; 2017 Dec; 160():22-32. PubMed ID: 28915498 [TBL] [Abstract][Full Text] [Related]
30. Improving osteointegration and osteogenesis of three-dimensional porous Ti6Al4V scaffolds by polydopamine-assisted biomimetic hydroxyapatite coating. Li Y; Yang W; Li X; Zhang X; Wang C; Meng X; Pei Y; Fan X; Lan P; Wang C; Li X; Guo Z ACS Appl Mater Interfaces; 2015 Mar; 7(10):5715-24. PubMed ID: 25711714 [TBL] [Abstract][Full Text] [Related]
31. Rationally designed functionally graded porous Ti6Al4V scaffolds with high strength and toughness built via selective laser melting for load-bearing orthopedic applications. Xiong YZ; Gao RN; Zhang H; Dong LL; Li JT; Li X J Mech Behav Biomed Mater; 2020 Apr; 104():103673. PubMed ID: 32174429 [TBL] [Abstract][Full Text] [Related]
32. Bone screws of porous silicon carbide coated with tantalum improve osseointegration and osteogenesis in goat femoral neck fractures. Ma Z; Liu R; Cao F; Li J; Yang J; Kang K; Gao Z; Zhao D Biomed Mater; 2021 Aug; 16(5):. PubMed ID: 34192669 [TBL] [Abstract][Full Text] [Related]
33. Microstructure and mechanical properties of additive manufactured porous Ti-33Nb-4Sn scaffolds for orthopaedic applications. Cheng X; Liu S; Chen C; Chen W; Liu M; Li R; Zhang X; Zhou K J Mater Sci Mater Med; 2019 Aug; 30(8):91. PubMed ID: 31388766 [TBL] [Abstract][Full Text] [Related]
34. Nanotube-decorated hierarchical tantalum scaffold promoted early osseointegration. Zhang Z; Li Y; He P; Liu F; Li L; Zhang H; Ji P; Yang S Nanomedicine; 2021 Jul; 35():102390. PubMed ID: 33857685 [TBL] [Abstract][Full Text] [Related]
35. Highly Porous 3D Printed Tantalum Scaffolds Have Better Biomechanical and Microstructural Properties than Titanium Scaffolds. Fan H; Deng S; Tang W; Muheremu A; Wu X; He P; Tan C; Wang G; Tang J; Guo K; Yang L; Wang F Biomed Res Int; 2021; 2021():2899043. PubMed ID: 34621893 [TBL] [Abstract][Full Text] [Related]
36. Three-Dimensional Printed Titanium Scaffolds Enhance Osteogenic Differentiation and New Bone Formation by Cultured Adipose Tissue-Derived Stem Cells Through the IGF-1R/AKT/Mammalian Target of Rapamycin Complex 1 (mTORC1) Pathway. Zhou X; Zhang D; Wang M; Zhang D; Xu Y Med Sci Monit; 2019 Oct; 25():8043-8054. PubMed ID: 31655847 [TBL] [Abstract][Full Text] [Related]
37. In vitro and in vivo evaluation of MgF Yu W; Zhao H; Ding Z; Zhang Z; Sun B; Shen J; Chen S; Zhang B; Yang K; Liu M; Chen D; He Y Colloids Surf B Biointerfaces; 2017 Jan; 149():330-340. PubMed ID: 27792982 [TBL] [Abstract][Full Text] [Related]
38. The effect of 3D-printed Ti Wang H; Su K; Su L; Liang P; Ji P; Wang C J Mech Behav Biomed Mater; 2018 Dec; 88():488-496. PubMed ID: 30223212 [TBL] [Abstract][Full Text] [Related]
39. Evaluation of an artificial vertebral body fabricated by a tantalum-coated porous titanium scaffold for lumbar vertebral defect repair in rabbits. Wang F; Wang L; Feng Y; Yang X; Ma Z; Shi L; Ma X; Wang J; Ma T; Yang Z; Wen X; Zhang Y; Lei W Sci Rep; 2018 Jun; 8(1):8927. PubMed ID: 29895937 [TBL] [Abstract][Full Text] [Related]
40. Compression properties and optimization design of SLM Ti6Al4V square pore tissue engineering scaffolds. Shi X; Sun Y; Wang P; Ma Z; Liu H; Ning H Proc Inst Mech Eng H; 2021 Nov; 235(11):1265-1273. PubMed ID: 34281449 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]