BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 34876168)

  • 1. Lithium administered to pregnant, lactating and neonatal rats: entry into developing brain.
    Chiou SY; Kysenius K; Huang Y; Habgood MD; Koehn LM; Qiu F; Crouch PJ; Varshney S; Ganio K; Dziegielewska KM; Saunders NR
    Fluids Barriers CNS; 2021 Dec; 18(1):57. PubMed ID: 34876168
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transfer of rhodamine-123 into the brain and cerebrospinal fluid of fetal, neonatal and adult rats.
    Koehn LM; Dziegielewska KM; Habgood MD; Huang Y; Saunders NR
    Fluids Barriers CNS; 2021 Feb; 18(1):6. PubMed ID: 33557872
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Entry of the antipsychotic drug, olanzapine, into the developing rat brain in mono- and combination therapies.
    Huang Y; Qiu F; Habgood M; Nie S; Dziegielewska K; Saunders N
    F1000Res; 2022; 11():1417. PubMed ID: 36798113
    [No Abstract]   [Full Text] [Related]  

  • 4. Uptake of lithium into rat brain after acute and chronic administration.
    Hillert M; Zimmermann M; Klein J
    Neurosci Lett; 2012 Jul; 521(1):62-6. PubMed ID: 22659074
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Entry of cystic fibrosis transmembrane conductance potentiator ivacaftor into the developing brain and lung.
    Qiu F; Habgood MD; Huang Y; Dziegielewska KM; Toll S; Schneider-Futschik EK
    J Cyst Fibros; 2021 Sep; 20(5):857-864. PubMed ID: 34193363
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Decreased lithium disposition to cerebrospinal fluid in rats with glycerol-induced acute renal failure.
    Sakae R; Ishikawa A; Niso T; Komori Y; Aiba T; Kawasaki H; Kurosaki Y
    Pharm Res; 2008 Oct; 25(10):2243-9. PubMed ID: 18581208
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Determinants of drug entry into the developing brain.
    Koehn L; Habgood M; Huang Y; Dziegielewska K; Saunders N
    F1000Res; 2019; 8():1372. PubMed ID: 31656590
    [No Abstract]   [Full Text] [Related]  

  • 8. Entry of cannabidiol into the fetal, postnatal and adult rat brain.
    Fitzpatrick G; Huang Y; Qiu F; Habgood MD; Medcalf RL; Ho H; Dziegielewska KM; Saunders NR
    Cell Tissue Res; 2024 May; 396(2):177-195. PubMed ID: 38366086
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Distribution and biomarker of carbon-14 labeled fullerene C60 ([(14) C(U)]C60 ) in pregnant and lactating rats and their offspring after maternal intravenous exposure.
    Snyder RW; Fennell TR; Wingard CJ; Mortensen NP; Holland NA; Shannahan JH; Pathmasiri W; Lewin AH; Sumner SC
    J Appl Toxicol; 2015 Dec; 35(12):1438-51. PubMed ID: 26081520
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Low arachidonic acid rather than alpha-tocopherol is responsible for the delayed postnatal development in offspring of rats fed fish oil instead of olive oil during pregnancy and lactation.
    Amusquivar E; Rupérez FJ; Barbas C; Herrera E
    J Nutr; 2000 Nov; 130(11):2855-65. PubMed ID: 11053532
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Minor contribution of biliary excretion in lithium elimination in rats.
    Uwai Y; Kawasaki T; Nabekura T
    Drug Metab Pers Ther; 2015 Mar; 30(1):65-7. PubMed ID: 25803094
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Placental and lactational transfer of lead in rats: a study on the lactational process and effects on offspring.
    Hallén IP; Jorhem L; Oskarsson A
    Arch Toxicol; 1995; 69(9):596-602. PubMed ID: 8660136
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Concentration and persistence of tin in rat brain and blood following dibutyltin exposure during development.
    Moser VC; McGee JK; Ehman KD
    J Toxicol Environ Health A; 2009; 72(1):47-52. PubMed ID: 18979354
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Blood-CSF barrier function in the rat embryo.
    Johansson PA; Dziegielewska KM; Ek CJ; Habgood MD; Liddelow SA; Potter AM; Stolp HB; Saunders NR
    Eur J Neurosci; 2006 Jul; 24(1):65-76. PubMed ID: 16800861
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of carrageenan-induced acute peripheral inflammation on the electrolyte disposition to cerebrospinal fluid in rats.
    Kono K; Okada A; Ishikawa A; Aiba T
    Biol Pharm Bull; 2013; 36(11):1829-34. PubMed ID: 24189427
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Permeability and route of entry for lipid-insoluble molecules across brain barriers in developing Monodelphis domestica.
    Ek CJ; Habgood MD; Dziegielewska KM; Potter A; Saunders NR
    J Physiol; 2001 Nov; 536(Pt 3):841-53. PubMed ID: 11691876
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Distribution of carbon-14 labeled C60 ([14C]C60) in the pregnant and in the lactating dam and the effect of C60 exposure on the biochemical profile of urine.
    Sumner SC; Fennell TR; Snyder RW; Taylor GF; Lewin AH
    J Appl Toxicol; 2010 May; 30(4):354-60. PubMed ID: 20063269
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of chronic maternal hyperkalaemia on plasma, cerebrospinal fluid and brain interstitial fluid potassium in developing rats.
    Keep RF; Jones HC; Cawkwell RD
    J Dev Physiol; 1987 Feb; 9(1):89-95. PubMed ID: 3559065
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Altered electrolyte handling of the choroid plexus in rats with glycerol-induced acute renal failure.
    Ishikawa A; Kono K; Sakae R; Aiba T; Kawasaki H; Kurosaki Y
    Biopharm Drug Dispos; 2010 Nov; 31(8-9):455-63. PubMed ID: 20848389
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hexachlorobenzene accumulated by dams during pregnancy is transferred to suckling rats during early lactation.
    Nakashima Y; Ohsawa S; Umegaki K; Ikegami S
    J Nutr; 1997 Apr; 127(4):648-54. PubMed ID: 9109618
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.