These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

273 related articles for article (PubMed ID: 34876505)

  • 1. Local dendritic balance enables learning of efficient representations in networks of spiking neurons.
    Mikulasch FA; Rudelt L; Priesemann V
    Proc Natl Acad Sci U S A; 2021 Dec; 118(50):. PubMed ID: 34876505
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mirrored STDP Implements Autoencoder Learning in a Network of Spiking Neurons.
    Burbank KS
    PLoS Comput Biol; 2015 Dec; 11(12):e1004566. PubMed ID: 26633645
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characteristics of sequential activity in networks with temporally asymmetric Hebbian learning.
    Gillett M; Pereira U; Brunel N
    Proc Natl Acad Sci U S A; 2020 Nov; 117(47):29948-29958. PubMed ID: 33177232
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Emergence of Functional Specificity in Balanced Networks with Synaptic Plasticity.
    Sadeh S; Clopath C; Rotter S
    PLoS Comput Biol; 2015 Jun; 11(6):e1004307. PubMed ID: 26090844
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bayesian spiking neurons II: learning.
    Deneve S
    Neural Comput; 2008 Jan; 20(1):118-45. PubMed ID: 18045003
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of cellular homeostatic intrinsic plasticity on dynamical and computational properties of biological recurrent neural networks.
    Naudé J; Cessac B; Berry H; Delord B
    J Neurosci; 2013 Sep; 33(38):15032-43. PubMed ID: 24048833
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Distributed Bayesian Computation and Self-Organized Learning in Sheets of Spiking Neurons with Local Lateral Inhibition.
    Bill J; Buesing L; Habenschuss S; Nessler B; Maass W; Legenstein R
    PLoS One; 2015; 10(8):e0134356. PubMed ID: 26284370
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synapse-type-specific competitive Hebbian learning forms functional recurrent networks.
    Eckmann S; Young EJ; Gjorgjieva J
    Proc Natl Acad Sci U S A; 2024 Jun; 121(25):e2305326121. PubMed ID: 38870059
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Distinct Heterosynaptic Plasticity in Fast Spiking and Non-Fast-Spiking Inhibitory Neurons in Rat Visual Cortex.
    Chistiakova M; Ilin V; Roshchin M; Bannon N; Malyshev A; Kisvárday Z; Volgushev M
    J Neurosci; 2019 Aug; 39(35):6865-6878. PubMed ID: 31300522
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Emergence of network structure due to spike-timing-dependent plasticity in recurrent neuronal networks. II. Input selectivity--symmetry breaking.
    Gilson M; Burkitt AN; Grayden DB; Thomas DA; van Hemmen JL
    Biol Cybern; 2009 Aug; 101(2):103-14. PubMed ID: 19536559
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sparse coding with a somato-dendritic rule.
    Drix D; Hafner VV; Schmuker M
    Neural Netw; 2020 Nov; 131():37-49. PubMed ID: 32750603
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Learning in neural networks by reinforcement of irregular spiking.
    Xie X; Seung HS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Apr; 69(4 Pt 1):041909. PubMed ID: 15169045
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spike propagation synchronized by temporally asymmetric Hebbian learning.
    Suri RE; Sejnowski TJ
    Biol Cybern; 2002 Dec; 87(5-6):440-5. PubMed ID: 12461633
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neuron as a reward-modulated combinatorial switch and a model of learning behavior.
    Rvachev MM
    Neural Netw; 2013 Oct; 46():62-74. PubMed ID: 23708671
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Representation of input structure in synaptic weights by spike-timing-dependent plasticity.
    Gilson M; Burkitt AN; Grayden DB; Thomas DA; van Hemmen JL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Aug; 82(2 Pt 1):021912. PubMed ID: 20866842
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Brain as an Efficient and Robust Adaptive Learner.
    Denève S; Alemi A; Bourdoukan R
    Neuron; 2017 Jun; 94(5):969-977. PubMed ID: 28595053
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Supervised Learning in Spiking Neural Networks for Precise Temporal Encoding.
    Gardner B; Grüning A
    PLoS One; 2016; 11(8):e0161335. PubMed ID: 27532262
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Diverse synaptic plasticity mechanisms orchestrated to form and retrieve memories in spiking neural networks.
    Zenke F; Agnes EJ; Gerstner W
    Nat Commun; 2015 Apr; 6():6922. PubMed ID: 25897632
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cell-type-specific neuromodulation guides synaptic credit assignment in a spiking neural network.
    Liu YH; Smith S; Mihalas S; Shea-Brown E; Sümbül U
    Proc Natl Acad Sci U S A; 2021 Dec; 118(51):. PubMed ID: 34916291
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synaptic self-organization of spatio-temporal pattern selectivity.
    Dehghani-Habibabadi M; Pawelzik K
    PLoS Comput Biol; 2023 Feb; 19(2):e1010876. PubMed ID: 36780564
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.