BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 34876573)

  • 1. Boosting quantum yields in two-dimensional semiconductors via proximal metal plates.
    Lee Y; Forte JDS; Chaves A; Kumar A; Tran TT; Kim Y; Roy S; Taniguchi T; Watanabe K; Chernikov A; Jang JI; Low T; Kim J
    Nat Commun; 2021 Dec; 12(1):7095. PubMed ID: 34876573
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synergetic Enhancement of Quantum Yield and Exciton Lifetime of Monolayer WS
    Tran TT; Lee Y; Roy S; Tran TU; Kim Y; Taniguchi T; Watanabe K; Milošević MV; Lim SC; Chaves A; Jang JI; Kim J
    ACS Nano; 2024 Jan; 18(1):220-228. PubMed ID: 38127273
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Harnessing Exciton-Exciton Annihilation in Two-Dimensional Semiconductors.
    Linardy E; Yadav D; Vella D; Verzhbitskiy IA; Watanabe K; Taniguchi T; Pauly F; Trushin M; Eda G
    Nano Lett; 2020 Mar; 20(3):1647-1653. PubMed ID: 32078334
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced Light Emission from Monolayer Semiconductors by Forming Heterostructures with ZnO Thin Films.
    Kim MS; Roy S; Lee J; Kim BG; Kim H; Park JH; Yun SJ; Han GH; Leem JY; Kim J
    ACS Appl Mater Interfaces; 2016 Oct; 8(42):28809-28815. PubMed ID: 27718557
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Radiative suppression of exciton-exciton annihilation in a two-dimensional semiconductor.
    Sortino L; Gülmüs M; Tilmann B; de S Menezes L; Maier SA
    Light Sci Appl; 2023 Aug; 12(1):202. PubMed ID: 37620298
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Twist-angle-controlled neutral exciton annihilation in WS
    Xu L; Duan W; Liu Y; Wang J; Zhao Y; Li H; Liu H; Liu D
    Nanoscale; 2022 Apr; 14(14):5537-5544. PubMed ID: 35343557
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exciton dynamics and annihilation in WS2 2D semiconductors.
    Yuan L; Huang L
    Nanoscale; 2015 Apr; 7(16):7402-8. PubMed ID: 25826397
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neutral and defect-induced exciton annihilation in defective monolayer WS
    Liu H; Wang C; Liu D; Luo J
    Nanoscale; 2019 Apr; 11(16):7913-7920. PubMed ID: 30964503
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Temperature Dependence of Excitonic Auger Recombination in Excitonic-Complex-Free Monolayer WS
    Kim D; Tran TT; Taniguchi T; Watanabe K; Kim J; Jang JI
    J Phys Chem Lett; 2023 May; 14(18):4259-4265. PubMed ID: 37126643
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced light-matter interaction in two-dimensional transition metal dichalcogenides.
    Huang L; Krasnok A; Alú A; Yu Y; Neshev D; Miroshnichenko AE
    Rep Prog Phys; 2022 Mar; 85(4):. PubMed ID: 34939940
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inhibited nonradiative decay at all exciton densities in monolayer semiconductors.
    Kim H; Uddin SZ; Higashitarumizu N; Rabani E; Javey A
    Science; 2021 Jul; 373(6553):448-452. PubMed ID: 34437119
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exciton Polaritons in Emergent Two-Dimensional Semiconductors.
    Kang H; Ma J; Li J; Zhang X; Liu X
    ACS Nano; 2023 Dec; 17(24):24449-24467. PubMed ID: 38051774
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Measurement of Quantum Yields of Monolayer TMDs Using Dye-Dispersed PMMA Thin Films.
    Roy S; Sharbirin AS; Lee Y; Kim WB; Kim TS; Cho K; Kang K; Jung HS; Kim J
    Nanomaterials (Basel); 2020 May; 10(6):. PubMed ID: 32481624
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exciton Dipole Orientation of Strain-Induced Quantum Emitters in WSe
    Luo Y; Liu N; Kim B; Hone J; Strauf S
    Nano Lett; 2020 Jul; 20(7):5119-5126. PubMed ID: 32551697
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Near-Unity Light Absorption in a Monolayer WS
    Epstein I; Terrés B; Chaves AJ; Pusapati VV; Rhodes DA; Frank B; Zimmermann V; Qin Y; Watanabe K; Taniguchi T; Giessen H; Tongay S; Hone JC; Peres NMR; Koppens FHL
    Nano Lett; 2020 May; 20(5):3545-3552. PubMed ID: 32283034
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultrastrong exciton-plasmon couplings in WS
    Wu T; Wang C; Hu G; Wang Z; Zhao J; Wang Z; Chaykun K; Liu L; Chen M; Li D; Zhu S; Xiong Q; Shen Z; Gao H; Garcia-Vidal FJ; Wei L; Wang QJ; Luo Y
    Nat Commun; 2024 Apr; 15(1):3295. PubMed ID: 38632230
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interfacially Bound Exciton State in a Hybrid Structure of Monolayer WS
    Cheng G; Li B; Zhao C; Yan X; Wang H; Lau KM; Wang J
    Nano Lett; 2018 Sep; 18(9):5640-5645. PubMed ID: 30139259
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photoinduced Bandgap Renormalization and Exciton Binding Energy Reduction in WS
    Cunningham PD; Hanbicki AT; McCreary KM; Jonker BT
    ACS Nano; 2017 Dec; 11(12):12601-12608. PubMed ID: 29227085
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced Neutral Exciton Diffusion in Monolayer WS
    Uddin SZ; Higashitarumizu N; Kim H; Yi J; Zhang X; Chrzan D; Javey A
    ACS Nano; 2022 May; 16(5):8005-8011. PubMed ID: 35467828
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optical Introduction and Manipulation of Plasmon-Exciton-Trion Coupling in a Si/WS
    Liu S; Deng F; Zhuang W; He X; Huang H; Chen JD; Pang H; Lan S
    ACS Nano; 2022 Sep; 16(9):14390-14401. PubMed ID: 36067213
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.