These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
145 related articles for article (PubMed ID: 34876598)
1. The improved thermal efficiency of Prandtl-Eyring hybrid nanofluid via classical Keller box technique. Jamshed W; Baleanu D; Nasir NAAM; Shahzad F; Nisar KS; Shoaib M; Ahmad S; Ismail KA Sci Rep; 2021 Dec; 11(1):23535. PubMed ID: 34876598 [TBL] [Abstract][Full Text] [Related]
2. Computational analysis of radiative engine oil-based Prandtl-Eyring hybrid nanofluid flow with variable heat transfer using the Cattaneo-Christov heat flux model. Shah Z; Rooman M; Shutaywi M RSC Adv; 2023 Jan; 13(6):3552-3560. PubMed ID: 36756589 [TBL] [Abstract][Full Text] [Related]
3. Thermal growth in solar water pump using Prandtl-Eyring hybrid nanofluid: a solar energy application. Jamshed W; Nasir NAAM; Isa SSPM; Safdar R; Shahzad F; Nisar KS; Eid MR; Abdel-Aty AH; Yahia IS Sci Rep; 2021 Sep; 11(1):18704. PubMed ID: 34548554 [TBL] [Abstract][Full Text] [Related]
4. A numerical frame work of magnetically driven Powell-Eyring nanofluid using single phase model. Jamshed W; Eid MR; Nisar KS; Nasir NAAM; Edacherian A; Saleel CA; Vijayakumar V Sci Rep; 2021 Aug; 11(1):16500. PubMed ID: 34389786 [TBL] [Abstract][Full Text] [Related]
5. Transportation of entropy optimization in radiated chemically dissipative flow of Prandtl-Eyring nanofluid with activation energy. Qayyum S; Hayat T; Kanwal M; Alsaedi A; Ijaz Khan M Comput Methods Programs Biomed; 2020 Feb; 184():105130. PubMed ID: 31655304 [TBL] [Abstract][Full Text] [Related]
6. Nanomaterial based flow of Prandtl-Eyring (non-Newtonian) fluid using Brownian and thermophoretic diffusion with entropy generation. Khan MI; Khan SA; Hayat T; Khan MI; Alsaedi A Comput Methods Programs Biomed; 2019 Oct; 180():105017. PubMed ID: 31425940 [TBL] [Abstract][Full Text] [Related]
7. Analysis of Soret and Dufour effects on radiative heat transfer in hybrid bioconvective flow of carbon nanotubes. Hussain A; Raiz S; Hassan A; Hassan AM; Karamti H; Bognár G Sci Rep; 2024 May; 14(1):11970. PubMed ID: 38796613 [TBL] [Abstract][Full Text] [Related]
8. Bidirectional flow of MHD nanofluid with Hall current and Cattaneo-Christove heat flux toward the stretching surface. Ramzan M; Shah Z; Kumam P; Khan W; Watthayu W; Kumam W PLoS One; 2022; 17(4):e0264208. PubMed ID: 35421096 [TBL] [Abstract][Full Text] [Related]
9. Irreversibility analysis of hydromagnetic nanofluid flow past a horizontal surface via Koo-Kleinstreuer-Li (KKL) model. Hussain SM; Shahzad F; Katbar NM; Jamshed W; Eid MR; Kamel A; Akram M; Azeany Mohd Nasir NA; Ibrahim RW; Alanzi AM; El Din SM Heliyon; 2023 Jul; 9(7):e17668. PubMed ID: 37483748 [TBL] [Abstract][Full Text] [Related]
10. Entropy Analysis of Magnetized Carbon Nanofluid over Axially Rotating Stretching Disk. Nabwey HA; Sultana U; Mushtaq M; Ashraf M; Rashad AM; Alshber SI; Abu Hawsah M Materials (Basel); 2022 Nov; 15(23):. PubMed ID: 36500047 [TBL] [Abstract][Full Text] [Related]
11. Solar energy optimization in solar-HVAC using Sutterby hybrid nanofluid with Smoluchowski temperature conditions: a solar thermal application. Jamshed W; Eid MR; Safdar R; Pasha AA; Mohamed Isa SSP; Adil M; Rehman Z; Weera W Sci Rep; 2022 Jul; 12(1):11484. PubMed ID: 35798787 [TBL] [Abstract][Full Text] [Related]
12. Comparative appraisal of mono and hybrid nanofluid flows comprising carbon nanotubes over a three-dimensional surface impacted by Cattaneo-Christov heat flux. Alharbi KAM; Ramzan M; Shahmir N; Ghazwani HAS; Elmasry Y; Eldin SM; Bilal M Sci Rep; 2023 May; 13(1):7964. PubMed ID: 37198300 [TBL] [Abstract][Full Text] [Related]
13. Characteristics of chemical reaction and convective boundary conditions in Powell-Eyring nanofluid flow along a radiative Riga plate. Rasool G; Zhang T Heliyon; 2019 Apr; 5(4):e01479. PubMed ID: 30997431 [TBL] [Abstract][Full Text] [Related]
14. Unsteady hybrid-nanofluid flow comprising ferrousoxide and CNTs through porous horizontal channel with dilating/squeezing walls. Bilal M; Arshad H; Ramzan M; Shah Z; Kumam P Sci Rep; 2021 Jun; 11(1):12637. PubMed ID: 34135359 [TBL] [Abstract][Full Text] [Related]
15. Irreversibility analysis with hybrid cross nanofluid of stagnation point and radiative flow ( Lone SA; Ali F; Saeed A; Bognár G Heliyon; 2023 Apr; 9(4):e15056. PubMed ID: 37089319 [TBL] [Abstract][Full Text] [Related]
16. Impact of thermal radiation and internal heat generation on Casson nano-fluid flowing by a curved stretchable surface with suspension of carbon nanotubes (CNTs). Abideen ZU; Saif RS Heliyon; 2023 Aug; 9(8):e18941. PubMed ID: 37649845 [TBL] [Abstract][Full Text] [Related]
17. Irreversibility analysis of radiative flow of Prandtl nanofluid over a stretched surface in Darcy-Forchheimer medium with activation energy and chemical reaction. Zafar SS; Khan U; Ali F; Eldin SM; Saeed AM; Zaib A; Galal AM Heliyon; 2023 Apr; 9(4):e14877. PubMed ID: 37025881 [TBL] [Abstract][Full Text] [Related]
18. Numerical and Thermal Investigation of Magneto-Hydrodynamic Hybrid Nanoparticles (SWCNT-Ag) under Rosseland Radiation: A Prescribed Wall Temperature Case. Hassan A; Hussain A; Arshad M; Alanazi MM; Zahran HY Nanomaterials (Basel); 2022 Mar; 12(6):. PubMed ID: 35335704 [TBL] [Abstract][Full Text] [Related]
19. Stagnation point flow of radiative Oldroyd-B nanofluid over a rotating disk. Hafeez A; Khan M; Ahmed J Comput Methods Programs Biomed; 2020 Jul; 191():105342. PubMed ID: 32113101 [TBL] [Abstract][Full Text] [Related]
20. Modeling and computational analysis of hybrid class nanomaterials subject to entropy generation. Khan MI; Alsaedi A; Hayat T; Khan NB Comput Methods Programs Biomed; 2019 Oct; 179():104973. PubMed ID: 31443855 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]