These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

261 related articles for article (PubMed ID: 34876992)

  • 21. High-pressure elastic properties of dolomite melt supporting carbonate-induced melting in deep upper mantle.
    Xu M; Jing Z; Bajgain SK; Mookherjee M; Van Orman JA; Yu T; Wang Y
    Proc Natl Acad Sci U S A; 2020 Aug; 117(31):18285-18291. PubMed ID: 32690695
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Configurational entropy of basaltic melts in Earth's mantle.
    Lee SK; Mosenfelder JL; Park SY; Lee AC; Asimow PD
    Proc Natl Acad Sci U S A; 2020 Sep; 117(36):21938-21944. PubMed ID: 32839310
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Evidence for a late chondritic veneer in the Earth's mantle from high-pressure partitioning of palladium and platinum.
    Holzheid A; Sylvester P; O'Neill HS; Rubie DC; Palme HS
    Nature; 2000 Jul; 406(6794):396-9. PubMed ID: 10935633
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Viscosity of MgSiO3 liquid at Earth's mantle conditions: implications for an early magma ocean.
    Karki BB; Stixrude LP
    Science; 2010 May; 328(5979):740-2. PubMed ID: 20448181
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Evidence of denser MgSiO3 glass above 133 gigapascal (GPa) and implications for remnants of ultradense silicate melt from a deep magma ocean.
    Murakami M; Bass JD
    Proc Natl Acad Sci U S A; 2011 Oct; 108(42):17286-9. PubMed ID: 21969547
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Pressure-Induced Coordination Changes in a Pyrolitic Silicate Melt From Ab Initio Molecular Dynamics Simulations.
    Solomatova NV; Caracas R
    J Geophys Res Solid Earth; 2019 Nov; 124(11):11232-11250. PubMed ID: 32025456
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The effect of water on the electrical conductivity of olivine.
    Wang D; Mookherjee M; Xu Y; Karato S
    Nature; 2006 Oct; 443(7114):977-80. PubMed ID: 17066032
    [TBL] [Abstract][Full Text] [Related]  

  • 28. An early geodynamo driven by exsolution of mantle components from Earth's core.
    Badro J; Siebert J; Nimmo F
    Nature; 2016 Aug; 536(7616):326-8. PubMed ID: 27437583
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Electrical conductivity of SiO
    Scipioni R; Stixrude L; Desjarlais MP
    Proc Natl Acad Sci U S A; 2017 Aug; 114(34):9009-9013. PubMed ID: 28784773
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Redox freezing and melting in the Earth's deep mantle resulting from carbon-iron redox coupling.
    Rohrbach A; Schmidt MW
    Nature; 2011 Apr; 472(7342):209-12. PubMed ID: 21441908
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Aluminium control of argon solubility in silicate melts under pressure.
    Bouhifd MA; Jephcoat AP
    Nature; 2006 Feb; 439(7079):961-4. PubMed ID: 16495996
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Radiative conductivity in the Earth's lower mantle.
    Goncharov AF; Haugen BD; Struzhkin VV; Beck P; Jacobsen SD
    Nature; 2008 Nov; 456(7219):231-4. PubMed ID: 19005553
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Water solubility in aluminous orthopyroxene and the origin of Earth's asthenosphere.
    Mierdel K; Keppler H; Smyth JR; Langenhorst F
    Science; 2007 Jan; 315(5810):364-8. PubMed ID: 17234945
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Primary carbonatite melt from deeply subducted oceanic crust.
    Walter MJ; Bulanova GP; Armstrong LS; Keshav S; Blundy JD; Gudfinnsson G; Lord OT; Lennie AR; Clark SM; Smith CB; Gobbo L
    Nature; 2008 Jul; 454(7204):622-5. PubMed ID: 18668105
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Stability of hydrous melt at the base of the Earth's upper mantle.
    Sakamaki T; Suzuki A; Ohtani E
    Nature; 2006 Jan; 439(7073):192-4. PubMed ID: 16407950
    [TBL] [Abstract][Full Text] [Related]  

  • 36. NanoSIMS analysis of water content in bridgmanite at the micron scale: An experimental approach to probe water in Earth's deep mantle.
    Yang YN; Du Z; Lu W; Qi Y; Zhang YQ; Zhang WF; Zhang PF
    Front Chem; 2023; 11():1166593. PubMed ID: 37090248
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Structural dynamics of basaltic melt at mantle conditions with implications for magma oceans and superplumes.
    Majumdar A; Wu M; Pan Y; Iitaka T; Tse JS
    Nat Commun; 2020 Sep; 11(1):4815. PubMed ID: 32968073
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Pressure-induced coordination changes in alkali-germanate melts: an in situ spectroscopic investigation.
    Farber DL; Williams Q
    Science; 1992 Jun; 256(5062):1427-30. PubMed ID: 17791610
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effect of water on the fluorine and chlorine partitioning behavior between olivine and silicate melt.
    Joachim B; Stechern A; Ludwig T; Konzett J; Pawley A; RuziƩ-Hamilton L; Clay PL; Burgess R; Ballentine CJ
    Contrib Mineral Petrol; 2017; 172(4):15. PubMed ID: 28360435
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Lattice thermal conductivity of lower mantle minerals and heat flux from Earth's core.
    Manthilake GM; de Koker N; Frost DJ; McCammon CA
    Proc Natl Acad Sci U S A; 2011 Nov; 108(44):17901-4. PubMed ID: 22021444
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.