BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 34877721)

  • 41. A vacuum-annealing strategy for improving near-infrared super long persistent luminescence in Cr(3+) doped zinc gallogermanate nanoparticles for bio-imaging.
    Yang J; Liu Y; Yan D; Zhu H; Liu C; Xu C; Ma L; Wang X
    Dalton Trans; 2016 Jan; 45(4):1364-72. PubMed ID: 26647021
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Bright, small sizes and hydro-dispersive NIR persistent luminescence nanoparticles modified with Si and amino groups for enhanced bioimaging.
    Fu J; Lv QY; Li YS; Song X; Zhu Q; Ren X; Cui HF
    Nanotechnology; 2023 Feb; 34(17):. PubMed ID: 36706449
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Synthesis of functionalized triple-doped zinc gallogermanate nanoparticles with superlong near-infrared persistent luminescence for long-term orally administrated bioimaging.
    Li YJ; Yan XP
    Nanoscale; 2016 Aug; 8(32):14965-70. PubMed ID: 27466048
    [TBL] [Abstract][Full Text] [Related]  

  • 44. X-ray activated near-infrared persistent luminescence nanoparticles for trimodality
    Wang J; Sun X; Xu J; Liu L; Lin P; Luo X; Gao Y; Shi J; Zhang Y
    Biomater Sci; 2024 Jun; ():. PubMed ID: 38881248
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A multi-functional nano-platform based on LiGa
    Liu X; Xi R; Hu Y; Wang Y; Abdukayum A
    Dalton Trans; 2024 Apr; 53(15):6601-6608. PubMed ID: 38512315
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A persistent luminescence resonance energy transfer-based molecular beacon probe for the highly sensitive detection of microRNA in biological samples.
    Wang X; Wang Y; Chen S; Fu P; Lin Y; Ye S; Long Y; Gao G; Zheng J
    Biosens Bioelectron; 2022 Feb; 198():113849. PubMed ID: 34861528
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Erythrocyte membrane bioinspired near-infrared persistent luminescence nanocarriers for in vivo long-circulating bioimaging and drug delivery.
    Liu JM; Zhang DD; Fang GZ; Wang S
    Biomaterials; 2018 May; 165():39-47. PubMed ID: 29501968
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Synthesis and optical properties of a Y
    Wu L; Hu J; Zou Q; Lin Y; Huang D; Chen D; Lu H; Zhu H
    Nanoscale; 2020 Jul; 12(26):14180-14187. PubMed ID: 32602515
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Dual-functional persistent luminescent nanoparticles with enhanced persistent luminescence and photocatalytic activity.
    Tuerdi A; Abdukayum A
    RSC Adv; 2019 Jun; 9(31):17653-17657. PubMed ID: 35520580
    [TBL] [Abstract][Full Text] [Related]  

  • 50. H
    Liu J; Viana B; Mignet N; Scherman D; Liu Y; Richard C
    Small; 2023 Dec; 19(49):e2303509. PubMed ID: 37635118
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Detection of ascorbic acid by persistent luminescent nanoparticles based on CoOOH nanosheets modification.
    Zhai Z; Fan Z
    Mikrochim Acta; 2024 Jun; 191(7):398. PubMed ID: 38877344
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A novel removable template method for the preparation of persistent luminescence nanoparticles with biocompatible size and high intensity.
    Yan Z; Yin C; Sun M; Yuan W; Wang W; Wu Q; Yuan Z
    J Mater Chem B; 2023 May; 11(18):4076-4082. PubMed ID: 37092284
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Self-evolving persistent luminescence nanoprobes for autofluorescence-free ratiometric imaging and on-demand enhanced chemodynamic therapy of pulmonary metastatic tumors.
    Zhao X; Gu TY; Xia YP; Gao XM; Chen LJ; Yan LX; Yan XP
    Biomater Sci; 2024 Jun; 12(12):3229-3237. PubMed ID: 38764365
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Recent Progress of Near-Infrared Persistent Phosphors in Bio-related and Emerging Applications.
    Wu L; Tang Y; Lu F; Yuan Z
    Chem Asian J; 2021 May; 16(9):1041-1048. PubMed ID: 33734602
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Near-infrared-emitting persistent luminescent nanoparticles modified with gold nanorods as multifunctional probes for detection of arsenic(III).
    Ge K; Liu J; Wang P; Fang G; Zhang D; Wang S
    Mikrochim Acta; 2019 Feb; 186(3):197. PubMed ID: 30796600
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Persistent Luminescent Nanoparticles Containing Hydrogels for Targeted, Sustained, and Autofluorescence-Free Tumor Metastasis Imaging.
    Zhao H; Liu C; Gu Z; Dong L; Li F; Yao C; Yang D
    Nano Lett; 2020 Jan; 20(1):252-260. PubMed ID: 31793303
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Fluorescence resonance energy transfer inhibition assay for α-fetoprotein excreted during cancer cell growth using functionalized persistent luminescence nanoparticles.
    Wu BY; Wang HF; Chen JT; Yan XP
    J Am Chem Soc; 2011 Feb; 133(4):686-8. PubMed ID: 21166409
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Bimodal persistent luminescence for autofluorescence-free ratiometric biosensing.
    Dai W; Qi B; Li Z; Wang J
    Anal Bioanal Chem; 2023 Nov; 415(27):6723-6731. PubMed ID: 37733257
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Dye Sensitization Offers a Brighter Afterglow Nanoparticle Future for in vivo Recharged Luminescent Imaging.
    Zhou J; Huang K; Lin S; Zhang N; Wang X; Li Y; Li Z; Han G
    Chemistry; 2022 May; 28(26):e202104366. PubMed ID: 35218098
    [TBL] [Abstract][Full Text] [Related]  

  • 60. In Vivo Repeatedly Activated Persistent Luminescence Nanoparticles by Radiopharmaceuticals for Long-Lasting Tumor Optical Imaging.
    Liu N; Shi J; Wang Q; Guo J; Hou Z; Su X; Zhang H; Sun X
    Small; 2020 Jul; 16(26):e2001494. PubMed ID: 32510845
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.