These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 34877727)

  • 1. Similar zooplankton responses to low pH and calcium may impair long-term recovery from acidification.
    Ross AJ; Arnott SE
    Ecol Appl; 2022 Apr; 32(3):e2512. PubMed ID: 34877727
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The recovery of crustacean zooplankton from acidification depends on lake type.
    Pilotto F; Walseng B; Jensen TC; Schartau AK
    Glob Chang Biol; 2023 Nov; 29(21):6066-6076. PubMed ID: 37609877
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ca
    Durant AC; Celis-Salgado MP; Ezatollahpour S; Yan ND; Arnott SE; Donini A
    Comp Biochem Physiol A Mol Integr Physiol; 2018 Apr; 218():8-15. PubMed ID: 29366920
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Declining calcium concentration drives shifts toward smaller and less nutritious zooplankton in northern lakes.
    Bergström AK; Creed IF; Paltsev A; de Wit HA; Lau DCP; Drakare S; Vrede T; Isles PDF; Jonsson A; Geibrink E; Kortelainen P; Vuorenmaa J; Vuorio K; Kahilainen KK; Hessen DO
    Glob Chang Biol; 2024 Mar; 30(3):e17220. PubMed ID: 38433333
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recovery of crustacean zooplankton communities from acidification in Killarney Park, Ontario, 1971-2000: pH 6 as a recovery goal.
    Holt C; Yan ND
    Ambio; 2003 Apr; 32(3):203-7. PubMed ID: 12839196
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Does dispersal limitation impact the recovery of zooplankton communities damaged by a regional stressor?
    Gray DK; Arnott SE
    Ecol Appl; 2011 Jun; 21(4):1241-56. PubMed ID: 21774427
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The widespread threat of calcium decline in fresh waters.
    Jeziorski A; Yan ND; Paterson AM; Desellas AM; Turner MA; Jeffries DS; Keller B; Weeber RC; McNicol DK; Palmer ME; McIver K; Arseneau K; Ginn BK; Cumming BF; Smol JP
    Science; 2008 Nov; 322(5906):1374-7. PubMed ID: 19039134
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fish-mediated plankton responses to increased temperature in subtropical aquatic mesocosm ecosystems: Implications for lake management.
    He H; Jin H; Jeppesen E; Li K; Liu Z; Zhang Y
    Water Res; 2018 Nov; 144():304-311. PubMed ID: 30071399
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The interplay between environmental conditions and allee effects during the recovery of stressed zooplankton communities.
    Gray DK; Arnott SE
    Ecol Appl; 2011 Oct; 21(7):2652-63. PubMed ID: 22073650
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Does road salting confound the recovery of the microcrustacean community in an acidified lake?
    Jensen TC; Meland S; Schartau AK; Walseng B
    Sci Total Environ; 2014 Apr; 478():36-47. PubMed ID: 24530583
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Trajectories of zooplankton recovery in the Little Rock Lake whole-lake acidification experiment.
    Frost TM; Fischer JM; Klug JL; Arnott SE; Montz PK
    Ecol Appl; 2006 Feb; 16(1):353-67. PubMed ID: 16705985
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predation-driven dynamics of zooplankton and phytoplankton communities in a whole-lake experiment.
    Elser JJ; Carpenter SR
    Oecologia; 1988 Jun; 76(1):148-154. PubMed ID: 28312392
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Acid rain recovery may help to mitigate the impacts of climate change on thermally sensitive fish in lakes across eastern North America.
    Warren DR; Kraft CE; Josephson DC; Driscoll CT
    Glob Chang Biol; 2017 Jun; 23(6):2149-2153. PubMed ID: 27976837
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The jellification of north temperate lakes.
    Jeziorski A; Tanentzap AJ; Yan ND; Paterson AM; Palmer ME; Korosi JB; Rusak JA; Arts MT; Keller WB; Ingram R; Cairns A; Smol JP
    Proc Biol Sci; 2015 Jan; 282(1798):20142449. PubMed ID: 25411451
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Long-term variation of zooplankton communities in a large, heterogenous lake: Implications for future environmental change scenarios.
    Zhou J; Qin B; Zhu G; Zhang Y; Gao G
    Environ Res; 2020 Aug; 187():109704. PubMed ID: 32473462
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Acid and aluminum effects on freshwater zooplankton: an in situ Mesocosm study.
    Havens KE; Heath RT
    Environ Pollut; 1989; 62(2-3):195-211. PubMed ID: 15092345
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lowered nutritional quality of plankton caused by global environmental changes.
    Lau DCP; Jonsson A; Isles PDF; Creed IF; Bergström AK
    Glob Chang Biol; 2021 Dec; 27(23):6294-6306. PubMed ID: 34520606
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Legacy effects of fish but not elevation influence lake ecosystem response to environmental change.
    Symons CC; Schulhof MA; Cavalheri HB; Shurin JB
    J Anim Ecol; 2021 Mar; 90(3):662-672. PubMed ID: 33251623
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predators drive community reorganization during experimental range shifts.
    Jones NT; Symons CC; Cavalheri H; Pedroza-Ramos A; Shurin JB
    J Anim Ecol; 2020 Oct; 89(10):2378-2388. PubMed ID: 32592594
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 20th century acidification and warming as recorded in two alpine lakes in the Tatra Mountains (South Poland, Europe).
    Gasiorowski M; Sienkiewicz E
    Sci Total Environ; 2010 Feb; 408(5):1091-101. PubMed ID: 19896170
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.