These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 34877729)
1. N-acetylglucosamine transporter, Ngt1, undergoes sugar-responsive endosomal trafficking in Candida albicans. Hanumantha Rao K; Roy K; Paul S; Ghosh S Mol Microbiol; 2022 Feb; 117(2):429-449. PubMed ID: 34877729 [TBL] [Abstract][Full Text] [Related]
2. Identification of an N-acetylglucosamine transporter that mediates hyphal induction in Candida albicans. Alvarez FJ; Konopka JB Mol Biol Cell; 2007 Mar; 18(3):965-75. PubMed ID: 17192409 [TBL] [Abstract][Full Text] [Related]
3. N-acetylglucosamine (GlcNAc) induction of hyphal morphogenesis and transcriptional responses in Candida albicans are not dependent on its metabolism. Naseem S; Gunasekera A; Araya E; Konopka JB J Biol Chem; 2011 Aug; 286(33):28671-28680. PubMed ID: 21700702 [TBL] [Abstract][Full Text] [Related]
4. Integrated control of transporter endocytosis and recycling by the arrestin-related protein Rod1 and the ubiquitin ligase Rsp5. Becuwe M; Léon S Elife; 2014 Nov; 3():. PubMed ID: 25380227 [TBL] [Abstract][Full Text] [Related]
5. Role of the N-acetylglucosamine kinase (Hxk1) in the regulation of white-gray-opaque tristable phenotypic transitions in C. albicans. Cao C; Guan G; Du H; Tao L; Huang G Fungal Genet Biol; 2016 Jul; 92():26-32. PubMed ID: 27153757 [TBL] [Abstract][Full Text] [Related]
6. N-acetylglucosamine (GlcNAc) triggers a rapid, temperature-responsive morphogenetic program in thermally dimorphic fungi. Gilmore SA; Naseem S; Konopka JB; Sil A PLoS Genet; 2013; 9(9):e1003799. PubMed ID: 24068964 [TBL] [Abstract][Full Text] [Related]
7. Identification of GIG1, a GlcNAc-induced gene in Candida albicans needed for normal sensitivity to the chitin synthase inhibitor nikkomycin Z. Gunasekera A; Alvarez FJ; Douglas LM; Wang HX; Rosebrock AP; Konopka JB Eukaryot Cell; 2010 Oct; 9(10):1476-83. PubMed ID: 20675577 [TBL] [Abstract][Full Text] [Related]
8. N-acetylglucosamine-mediated morphological transition in Candida albicans and Candida tropicalis. Lew SQ; Lin CH Curr Genet; 2021 Apr; 67(2):249-254. PubMed ID: 33388851 [TBL] [Abstract][Full Text] [Related]
9. Zhang Q; Xu L; Yuan S; Zhou Q; Wang X; Wang L; Hu Z; Yan Y Int J Mol Sci; 2020 Jun; 21(11):. PubMed ID: 32516879 [No Abstract] [Full Text] [Related]
10. N-Acetylglucosamine (GlcNAc) Sensing, Utilization, and Functions in Du H; Ennis CL; Hernday AD; Nobile CJ; Huang G J Fungi (Basel); 2020 Aug; 6(3):. PubMed ID: 32784532 [TBL] [Abstract][Full Text] [Related]
11. Regulation of Hyphal Growth and N-Acetylglucosamine Catabolism by Two Transcription Factors in Naseem S; Min K; Spitzer D; Gardin J; Konopka JB Genetics; 2017 May; 206(1):299-314. PubMed ID: 28348062 [TBL] [Abstract][Full Text] [Related]
12. The N-acetylglucosamine catabolic gene cluster in Trichoderma reesei is controlled by the Ndt80-like transcription factor RON1. Kappel L; Gaderer R; Flipphi M; Seidl-Seiboth V Mol Microbiol; 2016 Feb; 99(4):640-57. PubMed ID: 26481444 [TBL] [Abstract][Full Text] [Related]
13. A molecular switch on an arrestin-like protein relays glucose signaling to transporter endocytosis. Becuwe M; Vieira N; Lara D; Gomes-Rezende J; Soares-Cunha C; Casal M; Haguenauer-Tsapis R; Vincent O; Paiva S; Léon S J Cell Biol; 2012 Jan; 196(2):247-59. PubMed ID: 22249293 [TBL] [Abstract][Full Text] [Related]
14. N-acetylglucosamine (GlcNAc)-inducible gene GIG2 is a novel component of GlcNAc metabolism in Candida albicans. Ghosh S; Hanumantha Rao K; Bhavesh NS; Das G; Dwivedi VP; Datta A Eukaryot Cell; 2014 Jan; 13(1):66-76. PubMed ID: 24186949 [TBL] [Abstract][Full Text] [Related]
15. 2-Deoxyglucose impairs Saccharomyces cerevisiae growth by stimulating Snf1-regulated and α-arrestin-mediated trafficking of hexose transporters 1 and 3. O'Donnell AF; McCartney RR; Chandrashekarappa DG; Zhang BB; Thorner J; Schmidt MC Mol Cell Biol; 2015 Mar; 35(6):939-55. PubMed ID: 25547292 [TBL] [Abstract][Full Text] [Related]
16. The yeast arrestin-related protein Bul1 is a novel actor of glucose-induced endocytosis. Hovsepian J; Albanèse V; Becuwe M; Ivashov V; Teis D; Léon S Mol Biol Cell; 2018 May; 29(9):1012-1020. PubMed ID: 29514933 [TBL] [Abstract][Full Text] [Related]
17. Transition of yeast Can1 transporter to the inward-facing state unveils an α-arrestin target sequence promoting its ubiquitylation and endocytosis. Gournas C; Saliba E; Krammer EM; Barthelemy C; Prévost M; André B Mol Biol Cell; 2017 Oct; 28(21):2819-2832. PubMed ID: 28814503 [TBL] [Abstract][Full Text] [Related]
18. Vesely EM; Williams RB; Konopka JB; Lorenz MC mSphere; 2017; 2(5):. PubMed ID: 28904994 [TBL] [Abstract][Full Text] [Related]
19. Convergence of ubiquitylation and phosphorylation signaling in rapamycin-treated yeast cells. Iesmantavicius V; Weinert BT; Choudhary C Mol Cell Proteomics; 2014 Aug; 13(8):1979-92. PubMed ID: 24961812 [TBL] [Abstract][Full Text] [Related]
20. Endocytosis of nutrient transporters in fungi: The ART of connecting signaling and trafficking. Barata-Antunes C; Alves R; Talaia G; Casal M; Gerós H; Mans R; Paiva S Comput Struct Biotechnol J; 2021; 19():1713-1737. PubMed ID: 33897977 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]