These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 34878181)

  • 1. DNA-assisted site-selective protein modification.
    Keijzer JF; Albada B
    Biopolymers; 2022 Mar; 113(3):e23483. PubMed ID: 34878181
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Calibrating Catalytic DNA Nanostructures for Site-Selective Protein Modification.
    Keijzer JF; Zuilhof H; Albada B
    Chemistry; 2022 Sep; 28(51):e202200895. PubMed ID: 35726668
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functionalised Cofactor Mimics for Interactome Discovery and Beyond.
    Wilkinson IVL; Pfanzelt M; Sieber SA
    Angew Chem Int Ed Engl; 2022 Jul; 61(29):e202201136. PubMed ID: 35286003
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Zn
    Moon WJ; Yang Y; Liu J
    Chembiochem; 2021 Mar; 22(5):779-789. PubMed ID: 33007113
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Activity-Based Sensing for Site-Specific Proteomic Analysis of Cysteine Oxidation.
    Shi Y; Carroll KS
    Acc Chem Res; 2020 Jan; 53(1):20-31. PubMed ID: 31869209
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DNA nanocrane-based catalysts for region-specific protein modification.
    Keijzer JF; Albada B
    Org Biomol Chem; 2024 Feb; 22(7):1447-1452. PubMed ID: 38270061
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pursuing DNA catalysts for protein modification.
    Silverman SK
    Acc Chem Res; 2015 May; 48(5):1369-79. PubMed ID: 25939889
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chemical Posttranslational Modification with Designed Rhodium(II) Catalysts.
    Martin SC; Minus MB; Ball ZT
    Methods Enzymol; 2016; 580():1-19. PubMed ID: 27586326
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Advanced Selection Methodologies for DNAzymes in Sensing and Healthcare Applications.
    Kumar S; Jain S; Dilbaghi N; Ahluwalia AS; Hassan AA; Kim KH
    Trends Biochem Sci; 2019 Mar; 44(3):190-213. PubMed ID: 30559045
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DNA Catalysis: The Chemical Repertoire of DNAzymes.
    Hollenstein M
    Molecules; 2015 Nov; 20(11):20777-804. PubMed ID: 26610449
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative analysis of Cu (I)-catalyzed alkyne-azide cycloaddition (CuAAC) and strain-promoted alkyne-azide cycloaddition (SPAAC) in O-GlcNAc proteomics.
    Li S; Zhu H; Wang J; Wang X; Li X; Ma C; Wen L; Yu B; Wang Y; Li J; Wang PG
    Electrophoresis; 2016 Jun; 37(11):1431-6. PubMed ID: 26853435
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Site-selective lysine conjugation methods and applications towards antibody-drug conjugates.
    Haque M; Forte N; Baker JR
    Chem Commun (Camb); 2021 Oct; 57(82):10689-10702. PubMed ID: 34570125
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Catalytic molecular logic devices by DNAzyme displacement.
    Brown CW; Lakin MR; Stefanovic D; Graves SW
    Chembiochem; 2014 May; 15(7):950-4. PubMed ID: 24692254
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recognition-then-Reaction Enables Site-Selective Bioconjugation to Proteins on Live-Cell Surfaces.
    Cui C; Zhang H; Wang R; Cansiz S; Pan X; Wan S; Hou W; Li L; Chen M; Liu Y; Chen X; Liu Q; Tan W
    Angew Chem Int Ed Engl; 2017 Sep; 56(39):11954-11957. PubMed ID: 28840953
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metal ion-dependent DNAzymes and their applications as biosensors.
    Lan T; Lu Y
    Met Ions Life Sci; 2012; 10():217-48. PubMed ID: 22210341
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A general approach for rational design of fluorescent DNA aptazyme sensors based on target-induced unfolding of DNA hairpins.
    Zhou Z; Xiao L; Xiang Y; Zhou J; Tong A
    Anal Chim Acta; 2015 Aug; 889():179-86. PubMed ID: 26343441
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Target Self-Enhanced Selectivity in Metal-Specific DNAzymes.
    Huang PJ; de Rochambeau D; Sleiman HF; Liu J
    Angew Chem Int Ed Engl; 2020 Feb; 59(9):3573-3577. PubMed ID: 31867832
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deoxyribozymes: DNA catalysts for bioorganic chemistry.
    Silverman SK
    Org Biomol Chem; 2004 Oct; 2(19):2701-6. PubMed ID: 15455136
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Position-specific modification with imidazolyl group on10-23 DNAzyme realized catalytic activity enhancement.
    Li Z; Liu Y; Liu G; Zhu J; Zheng Z; Zhou Y; He J
    Bioorg Med Chem; 2014 Aug; 22(15):4010-7. PubMed ID: 24961875
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Targeting insulin-like growth factor I with 10-23 DNAzymes: 2'-O-methyl modifications in the catalytic core enhance mRNA cleavage.
    Fokina AA; Meschaninova MI; Durfort T; Venyaminova AG; François JC
    Biochemistry; 2012 Mar; 51(11):2181-91. PubMed ID: 22352843
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.