These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 34878210)

  • 1. Electrocatalytic Water Splitting: From Harsh and Mild Conditions to Natural Seawater.
    Xiao X; Yang L; Sun W; Chen Y; Yu H; Li K; Jia B; Zhang L; Ma T
    Small; 2022 Mar; 18(11):e2105830. PubMed ID: 34878210
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design Strategy of Corrosion-Resistant Electrodes for Seawater Electrolysis.
    Zhao L; Li X; Yu J; Zhou W
    Materials (Basel); 2023 Mar; 16(7):. PubMed ID: 37049003
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Advances in hydrogen production from electrocatalytic seawater splitting.
    Wang C; Shang H; Jin L; Xu H; Du Y
    Nanoscale; 2021 May; 13(17):7897-7912. PubMed ID: 33881101
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Energy-Saving Hydrogen Production by Seawater Electrolysis Coupling Sulfion Degradation.
    Zhang L; Wang Z; Qiu J
    Adv Mater; 2022 Apr; 34(16):e2109321. PubMed ID: 35150022
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Robust FeCoP nanoparticles grown on a rGO-coated Ni foam as an efficient oxygen evolution catalyst for excellent alkaline and seawater electrolysis.
    Zheng Y; Yu D; Xu W; Zhang K; Ma K; Guo X; Lou Y; Hu M
    Dalton Trans; 2023 Mar; 52(11):3493-3500. PubMed ID: 36846870
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Towards Versatile and Sustainable Hydrogen Production through Electrocatalytic Water Splitting: Electrolyte Engineering.
    Shinagawa T; Takanabe K
    ChemSusChem; 2017 Apr; 10(7):1318-1336. PubMed ID: 27984671
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydrogen production from water electrolysis: role of catalysts.
    Wang S; Lu A; Zhong CJ
    Nano Converg; 2021 Feb; 8(1):4. PubMed ID: 33575919
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Self-Powered Seawater Electrolysis Based on a Triboelectric Nanogenerator for Hydrogen Production.
    Zhang B; Zhang C; Yang O; Yuan W; Liu Y; He L; Hu Y; Zhao Z; Zhou L; Wang J; Wang ZL
    ACS Nano; 2022 Sep; 16(9):15286-15296. PubMed ID: 36098463
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transition metal-based catalysts for electrochemical water splitting at high current density: current status and perspectives.
    Li S; Li E; An X; Hao X; Jiang Z; Guan G
    Nanoscale; 2021 Aug; 13(30):12788-12817. PubMed ID: 34477767
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Non-noble metal-nitride based electrocatalysts for high-performance alkaline seawater electrolysis.
    Yu L; Zhu Q; Song S; McElhenny B; Wang D; Wu C; Qin Z; Bao J; Yu Y; Chen S; Ren Z
    Nat Commun; 2019 Nov; 10(1):5106. PubMed ID: 31704926
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Progress in the development of heteroatom-doped nickel phosphates for electrocatalytic water splitting.
    Yu Y; Chen Q; Li J; Rao P; Li R; Du Y; Jia C; Huang W; Luo J; Deng P; Shen Y; Tian X
    J Colloid Interface Sci; 2022 Feb; 607(Pt 2):1091-1102. PubMed ID: 34571296
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synergetic Function of the Single-Atom Ru-N
    Wang S; Wang M; Liu Z; Liu S; Chen Y; Li M; Zhang H; Wu Q; Guo J; Feng X; Chen Z; Pan Y
    ACS Appl Mater Interfaces; 2022 Apr; 14(13):15250-15258. PubMed ID: 35333511
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synergistic Modulation of Non-Precious-Metal Electrocatalysts for Advanced Water Splitting.
    Jiang WJ; Tang T; Zhang Y; Hu JS
    Acc Chem Res; 2020 Jun; 53(6):1111-1123. PubMed ID: 32466638
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In-situ synthesis of Ni
    Zhang D; Zhou Y; Liu D; Song C; Wang D
    J Colloid Interface Sci; 2023 Jan; 629(Pt A):873-881. PubMed ID: 36150264
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Innovative Strategies for Electrocatalytic Water Splitting.
    You B; Sun Y
    Acc Chem Res; 2018 Jul; 51(7):1571-1580. PubMed ID: 29537825
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recent Advances in Manganese-Based Materials for Electrolytic Water Splitting.
    Hu J; Zhou Y; Liu Y; Xu Z; Li H
    Int J Mol Sci; 2023 Apr; 24(7):. PubMed ID: 37047832
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Clean and Affordable Hydrogen Fuel from Alkaline Water Splitting: Past, Recent Progress, and Future Prospects.
    Yu ZY; Duan Y; Feng XY; Yu X; Gao MR; Yu SH
    Adv Mater; 2021 Aug; 33(31):e2007100. PubMed ID: 34117808
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A membrane-based seawater electrolyser for hydrogen generation.
    Xie H; Zhao Z; Liu T; Wu Y; Lan C; Jiang W; Zhu L; Wang Y; Yang D; Shao Z
    Nature; 2022 Dec; 612(7941):673-678. PubMed ID: 36450987
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Zr-doped CoFe-layered double hydroxides for highly efficient seawater electrolysis.
    Liu W; Jiang K; Hu Y; Li Q; Deng Y; Bao J; Lei Y
    J Colloid Interface Sci; 2021 Dec; 604():767-775. PubMed ID: 34303884
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mott-Schottky heterojunction of Se/NiSe
    Khatun S; Roy P
    J Colloid Interface Sci; 2023 Jan; 630(Pt B):844-854. PubMed ID: 36356450
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.