These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 34878470)

  • 1. Automated assessment of redox potentials for dyes in dye-sensitized photoelectrochemical cells.
    Belić J; Förster A; Menzel JP; Buda F; Visscher L
    Phys Chem Chem Phys; 2021 Dec; 24(1):197-210. PubMed ID: 34878470
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dye-catalyst dyads for photoelectrochemical water oxidation based on metal-free sensitizers.
    Decavoli C; Boldrini CL; Trifiletti V; Luong S; Fenwick O; Manfredi N; Abbotto A
    RSC Adv; 2021 Jan; 11(10):5311-5319. PubMed ID: 35423072
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tuning the charge transfer and optoelectronic properties of tetrathiafulvalene based organic dye-sensitized solar cells: a theoretical approach.
    Bora SR; Kalita DJ
    RSC Adv; 2021 Dec; 11(62):39246-39261. PubMed ID: 35492466
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electronic and optical properties of dye-sensitized TiO₂ interfaces.
    Pastore M; Selloni A; Fantacci S; De Angelis F
    Top Curr Chem; 2014; 347():1-45. PubMed ID: 24488437
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A comparative study of Ru(II) cyclometallated complexes versus thiocyanated heteroleptic complexes: thermodynamic force for efficient dye regeneration in dye-sensitized solar cells and how low could it be?
    Hussain M; Islam A; Bedja I; Gupta RK; Han L; El-Shafei A
    Phys Chem Chem Phys; 2014 Jul; 16(28):14874-81. PubMed ID: 24926746
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Theoretical Insights into D-D-π-A Sensitizers Employing N-Annulated Perylene for Dye-Sensitized Solar Cells.
    Estrella LL; Balanay MP; Kim DH
    J Phys Chem A; 2018 Aug; 122(30):6328-6342. PubMed ID: 29995411
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Systematic Computational Design and Optimization of Light Absorbing Dyes.
    Belić J; van Beek B; Menzel JP; Buda F; Visscher L
    J Phys Chem A; 2020 Aug; 124(31):6380-6388. PubMed ID: 32649188
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced Photocurrent via π-Bridge Extension of Perylenemonoimide-Based Dyes for p-Type Dye-Sensitized Solar Cells and Photoelectrochemical Cells.
    Ye H; Shen L; Zhang S; Li X; Yu F; Diao R; Hua J
    ACS Omega; 2018 Oct; 3(10):14448-14456. PubMed ID: 31458130
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural modulation of phenothiazine and coumarin based derivatives for high performance dye sensitized solar cells: a theoretical study.
    Ahmed S; Bora SR; Chutia T; Kalita DJ
    Phys Chem Chem Phys; 2021 Jun; 23(23):13190-13203. PubMed ID: 34085069
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Highly Efficient Photoelectrochemical Alkene Epoxidation on a Dye-Sensitized Photoanode.
    Zhu Y; Li X; Wen Z; Zhao R; Chen Z; Zhang Z; Gao H; Wang S; Li F
    J Am Chem Soc; 2024 Aug; 146(31):21903-21912. PubMed ID: 39046794
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Large pi-aromatic molecules as potential sensitizers for highly efficient dye-sensitized solar cells.
    Imahori H; Umeyama T; Ito S
    Acc Chem Res; 2009 Nov; 42(11):1809-18. PubMed ID: 19408942
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Correction: Automated assessment of redox potentials for dyes in dye-sensitized photoelectrochemical cells.
    Belić J; Förster A; Menzel JP; Buda F; Visscher L
    Phys Chem Chem Phys; 2023 Jul; 25(28):19266-19268. PubMed ID: 37265381
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Increased solar-driven chemical transformations through surface-induced benzoperylene aggregation in dye-sensitized photoanodes.
    Bruggeman DF; Detz RJ; Mathew S; Reek JNH
    Photochem Photobiol Sci; 2024 Mar; 23(3):503-516. PubMed ID: 38363531
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ab initio theoretical reinvestigation of the ground and excited state properties of silylated coumarins: Good candidates for solid state dye lasers and dye-sensitized solar cells.
    Jain VK
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 Nov; 150():806-13. PubMed ID: 26112104
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimizing porphyrins for dye sensitized solar cells using large-scale ab initio calculations.
    Ørnsø KB; Pedersen CS; Garcia-Lastra JM; Thygesen KS
    Phys Chem Chem Phys; 2014 Aug; 16(30):16246-54. PubMed ID: 24972146
    [TBL] [Abstract][Full Text] [Related]  

  • 16. First-Principles Modeling of a Dye-Sensitized TiO2/IrO2 Photoanode for Water Oxidation.
    Pastore M; De Angelis F
    J Am Chem Soc; 2015 May; 137(17):5798-809. PubMed ID: 25866864
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of the triiodide/iodide redox couple in dye regeneration in p-type dye-sensitized solar cells.
    Gibson EA; Le Pleux L; Fortage J; Pellegrin Y; Blart E; Odobel F; Hagfeldt A; Boschloo G
    Langmuir; 2012 Apr; 28(15):6485-93. PubMed ID: 22432412
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Physical Meaning of Virtual Kohn-Sham Orbitals and Orbital Energies: An Ideal Basis for the Description of Molecular Excitations.
    van Meer R; Gritsenko OV; Baerends EJ
    J Chem Theory Comput; 2014 Oct; 10(10):4432-41. PubMed ID: 26588140
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Selective TDDFT with automatic removal of ghost transitions: application to a perylene-dye-sensitized solar cell model.
    Kovyrshin A; De Angelis F; Neugebauer J
    Phys Chem Chem Phys; 2012 Jun; 14(24):8608-19. PubMed ID: 22617938
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sustainable hydrogen production from water using tandem dye-sensitized photoelectrochemical cells.
    Sherman BD; McMillan NK; Willinger D; Leem G
    Nano Converg; 2021 Mar; 8(1):7. PubMed ID: 33650039
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.