These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
42. Identification of novel triazole inhibitors of Wnt/β-catenin signaling based on the Niclosamide chemotype. Mook RA; Wang J; Ren XR; Piao H; Lyerly HK; Chen W Bioorg Med Chem Lett; 2019 Jan; 29(2):317-321. PubMed ID: 30551901 [TBL] [Abstract][Full Text] [Related]
43. AZ1366: An Inhibitor of Tankyrase and the Canonical Wnt Pathway that Limits the Persistence of Non-Small Cell Lung Cancer Cells Following EGFR Inhibition. Scarborough HA; Helfrich BA; Casás-Selves M; Schuller AG; Grosskurth SE; Kim J; Tan AC; Chan DC; Zhang Z; Zaberezhnyy V; Bunn PA; DeGregori J Clin Cancer Res; 2017 Mar; 23(6):1531-1541. PubMed ID: 27663586 [No Abstract] [Full Text] [Related]
44. Discovery of a Novel Series of Tankyrase Inhibitors by a Hybridization Approach. Anumala UR; Waaler J; Nkizinkiko Y; Ignatev A; Lazarow K; Lindemann P; Olsen PA; Murthy S; Obaji E; Majouga AG; Leonov S; von Kries JP; Lehtiö L; Krauss S; Nazaré M J Med Chem; 2017 Dec; 60(24):10013-10025. PubMed ID: 29155568 [TBL] [Abstract][Full Text] [Related]
45. Tankyrase inhibitors as therapeutic targets for cancer. Kamal A; Riyaz S; Srivastava AK; Rahim A Curr Top Med Chem; 2014; 14(17):1967-76. PubMed ID: 25262803 [TBL] [Abstract][Full Text] [Related]
46. Discovery of novel, induced-pocket binding oxazolidinones as potent, selective, and orally bioavailable tankyrase inhibitors. Bregman H; Chakka N; Guzman-Perez A; Gunaydin H; Gu Y; Huang X; Berry V; Liu J; Teffera Y; Huang L; Egge B; Mullady EL; Schneider S; Andrews PS; Mishra A; Newcomb J; Serafino R; Strathdee CA; Turci SM; Wilson C; DiMauro EF J Med Chem; 2013 Jun; 56(11):4320-42. PubMed ID: 23701517 [TBL] [Abstract][Full Text] [Related]
47. Discovery of a Novel Triazolopyridine Derivative as a Tankyrase Inhibitor. Ryu H; Nam KY; Kim HJ; Song JY; Hwang SG; Kim JS; Kim J; Ahn J Int J Mol Sci; 2021 Jul; 22(14):. PubMed ID: 34298950 [TBL] [Abstract][Full Text] [Related]
48. Triazole-Based Inhibitors of the Wnt/β-Catenin Signaling Pathway Improve Glucose and Lipid Metabolisms in Diet-Induced Obese Mice. Obianom ON; Ai Y; Li Y; Yang W; Guo D; Yang H; Sakamuru S; Xia M; Xue F; Shu Y J Med Chem; 2019 Jan; 62(2):727-741. PubMed ID: 30605343 [TBL] [Abstract][Full Text] [Related]
49. Tankyrase: a promising therapeutic target with pleiotropic action. Sagathia V; Patel C; Beladiya J; Patel S; Sheth D; Shah G Naunyn Schmiedebergs Arch Pharmacol; 2023 Dec; 396(12):3363-3374. PubMed ID: 37338576 [TBL] [Abstract][Full Text] [Related]
50. Structure-efficiency relationship of [1,2,4]triazol-3-ylamines as novel nicotinamide isosteres that inhibit tankyrases. Shultz MD; Majumdar D; Chin DN; Fortin PD; Feng Y; Gould T; Kirby CA; Stams T; Waters NJ; Shao W J Med Chem; 2013 Sep; 56(17):7049-59. PubMed ID: 23879431 [TBL] [Abstract][Full Text] [Related]
51. Discovery of tankyrase inhibiting flavones with increased potency and isoenzyme selectivity. Narwal M; Koivunen J; Haikarainen T; Obaji E; Legala OE; Venkannagari H; Joensuu P; Pihlajaniemi T; Lehtiö L J Med Chem; 2013 Oct; 56(20):7880-9. PubMed ID: 24116873 [TBL] [Abstract][Full Text] [Related]
52. Small-Molecule Inhibitors Targeting the Canonical WNT Signaling Pathway for the Treatment of Cancer. Liu Z; Wang P; Wold EA; Song Q; Zhao C; Wang C; Zhou J J Med Chem; 2021 Apr; 64(8):4257-4288. PubMed ID: 33822624 [TBL] [Abstract][Full Text] [Related]
53. USP25 regulates Wnt signaling by controlling the stability of tankyrases. Xu D; Liu J; Fu T; Shan B; Qian L; Pan L; Yuan J Genes Dev; 2017 May; 31(10):1024-1035. PubMed ID: 28619731 [TBL] [Abstract][Full Text] [Related]
54. Inhibition of tankyrase by a novel small molecule significantly attenuates prostate cancer cell proliferation. Cheng H; Li X; Wang C; Chen Y; Li S; Tan J; Tan B; He Y Cancer Lett; 2019 Feb; 443():80-90. PubMed ID: 30472184 [TBL] [Abstract][Full Text] [Related]
55. IWR-1, a tankyrase inhibitor, attenuates Wnt/β-catenin signaling in cancer stem-like cells and inhibits in vivo the growth of a subcutaneous human osteosarcoma xenograft. Martins-Neves SR; Paiva-Oliveira DI; Fontes-Ribeiro C; Bovée JVMG; Cleton-Jansen AM; Gomes CMF Cancer Lett; 2018 Feb; 414():1-15. PubMed ID: 29126913 [TBL] [Abstract][Full Text] [Related]
56. Tankyrase Inhibitors Target YAP by Stabilizing Angiomotin Family Proteins. Wang W; Li N; Li X; Tran MK; Han X; Chen J Cell Rep; 2015 Oct; 13(3):524-532. PubMed ID: 26456820 [TBL] [Abstract][Full Text] [Related]
57. Tankyrase as a Novel Molecular Target in Cancer and Fibrotic Diseases. Lakshmi TV; Bale S; Khurana A; Godugu C Curr Drug Targets; 2017; 18(10):1214-1224. PubMed ID: 27425647 [TBL] [Abstract][Full Text] [Related]
58. Tankyrase Inhibition Causes Reversible Intestinal Toxicity in Mice with a Therapeutic Index < 1. Zhong Y; Katavolos P; Nguyen T; Lau T; Boggs J; Sambrone A; Kan D; Merchant M; Harstad E; Diaz D; Costa M; Schutten M Toxicol Pathol; 2016 Feb; 44(2):267-78. PubMed ID: 26692561 [TBL] [Abstract][Full Text] [Related]
59. Design, synthesis, and biological evaluation of isoquinolin-1(2 Yao H; Wang Y; Jiangwen M; Peng Y; Wang Z Pharmazie; 2021 Apr; 76(4):132-137. PubMed ID: 33849696 [TBL] [Abstract][Full Text] [Related]
60. Tankyrase (PARP5) Inhibition Induces Bone Loss through Accumulation of Its Substrate SH3BP2. Mukai T; Fujita S; Morita Y Cells; 2019 Feb; 8(2):. PubMed ID: 30813388 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]