These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 34878782)

  • 1. Updated Prediction of Aggregators and Assay-Interfering Substructures in Food Compounds.
    Sánchez-Ruiz A; Colmenarejo G
    J Agric Food Chem; 2021 Dec; 69(50):15184-15194. PubMed ID: 34878782
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of Nuisance Substructures and Aggregators in a Comprehensive Database of Food Chemical Compounds.
    Kaya I; Colmenarejo G
    J Agric Food Chem; 2020 Aug; 68(33):8812-8824. PubMed ID: 32687707
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling Small-Molecule Reactivity Identifies Promiscuous Bioactive Compounds.
    Matlock MK; Hughes TB; Dahlin JL; Swamidass SJ
    J Chem Inf Model; 2018 Aug; 58(8):1483-1500. PubMed ID: 29990427
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hit Dexter 2.0: Machine-Learning Models for the Prediction of Frequent Hitters.
    Stork C; Chen Y; Šícho M; Kirchmair J
    J Chem Inf Model; 2019 Mar; 59(3):1030-1043. PubMed ID: 30624935
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Machine Learning Distinguishes with High Accuracy between Pan-Assay Interference Compounds That Are Promiscuous or Represent Dark Chemical Matter.
    Jasial S; Gilberg E; Blaschke T; Bajorath J
    J Med Chem; 2018 Nov; 61(22):10255-10264. PubMed ID: 30422657
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hit Dexter: A Machine-Learning Model for the Prediction of Frequent Hitters.
    Stork C; Wagner J; Friedrich NO; de Bruyn Kops C; Šícho M; Kirchmair J
    ChemMedChem; 2018 Mar; 13(6):564-571. PubMed ID: 29285887
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Frequent hitters: nuisance artifacts in high-throughput screening.
    Yang ZY; He JH; Lu AP; Hou TJ; Cao DS
    Drug Discov Today; 2020 Apr; 25(4):657-667. PubMed ID: 31987936
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural Analysis and Identification of Colloidal Aggregators in Drug Discovery.
    Yang ZY; Yang ZJ; Dong J; Wang LL; Zhang LX; Ding JJ; Ding XQ; Lu AP; Hou TJ; Cao DS
    J Chem Inf Model; 2019 Sep; 59(9):3714-3726. PubMed ID: 31430151
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Be Aware of Aggregators in the Search for Potential Human
    Viviani LG; Piccirillo E; Cheffer A; de Rezende L; Ulrich H; Carmona-Ribeiro AM; Amaral AT
    Molecules; 2018 Jul; 23(8):. PubMed ID: 30060466
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Highly Promiscuous Small Molecules from Biological Screening Assays Include Many Pan-Assay Interference Compounds but Also Candidates for Polypharmacology.
    Gilberg E; Jasial S; Stumpfe D; Dimova D; Bajorath J
    J Med Chem; 2016 Nov; 59(22):10285-10290. PubMed ID: 27809519
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Filtering promiscuous compounds in early drug discovery: is it a good idea?
    Senger MR; Fraga CA; Dantas RF; Silva FP
    Drug Discov Today; 2016 Jun; 21(6):868-72. PubMed ID: 26880580
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of small molecule aggregators from large compound libraries by support vector machines.
    Rao H; Li Z; Li X; Ma X; Ung C; Li H; Liu X; Chen Y
    J Comput Chem; 2010 Mar; 31(4):752-63. PubMed ID: 19569201
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ChemFLuo: a web-server for structure analysis and identification of fluorescent compounds.
    Yang ZY; Dong J; Yang ZJ; Yin M; Jiang HL; Lu AP; Chen X; Hou TJ; Cao DS
    Brief Bioinform; 2021 Jul; 22(4):. PubMed ID: 33201188
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of Compounds That Interfere with High-Throughput Screening Assay Technologies.
    David L; Walsh J; Sturm N; Feierberg I; Nissink JWM; Chen H; Bajorath J; Engkvist O
    ChemMedChem; 2019 Oct; 14(20):1795-1802. PubMed ID: 31479198
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Large-scale bioactivity analysis of the small-molecule assayed proteome.
    Backman TW; Evans DS; Girke T
    PLoS One; 2017; 12(2):e0171413. PubMed ID: 28178331
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computational advances in combating colloidal aggregation in drug discovery.
    Reker D; Bernardes GJL; Rodrigues T
    Nat Chem; 2019 May; 11(5):402-418. PubMed ID: 30988417
    [TBL] [Abstract][Full Text] [Related]  

  • 17. PAIN(S) relievers for medicinal chemists: how computational methods can assist in hit evaluation.
    Stork C; Kirchmair J
    Future Med Chem; 2018 Jul; 10(13):1533-1535. PubMed ID: 29956552
    [No Abstract]   [Full Text] [Related]  

  • 18. How Frequently Are Pan-Assay Interference Compounds Active? Large-Scale Analysis of Screening Data Reveals Diverse Activity Profiles, Low Global Hit Frequency, and Many Consistently Inactive Compounds.
    Jasial S; Hu Y; Bajorath J
    J Med Chem; 2017 May; 60(9):3879-3886. PubMed ID: 28421750
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Privileged Substructures to Modulate Protein-Protein Interactions.
    Bosc N; Kuenemann MA; Bécot J; Vavrusa M; Cerdan AH; Sperandio O
    J Chem Inf Model; 2017 Oct; 57(10):2448-2462. PubMed ID: 28922596
    [TBL] [Abstract][Full Text] [Related]  

  • 20. All-Assay-Max2 pQSAR: Activity Predictions as Accurate as Four-Concentration IC
    Martin EJ; Polyakov VR; Zhu XW; Tian L; Mukherjee P; Liu X
    J Chem Inf Model; 2019 Oct; 59(10):4450-4459. PubMed ID: 31518124
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.