BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

270 related articles for article (PubMed ID: 34878785)

  • 1. InteractionGraphNet: A Novel and Efficient Deep Graph Representation Learning Framework for Accurate Protein-Ligand Interaction Predictions.
    Jiang D; Hsieh CY; Wu Z; Kang Y; Wang J; Wang E; Liao B; Shen C; Xu L; Wu J; Cao D; Hou T
    J Med Chem; 2021 Dec; 64(24):18209-18232. PubMed ID: 34878785
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predicting Drug-Target Interaction Using a Novel Graph Neural Network with 3D Structure-Embedded Graph Representation.
    Lim J; Ryu S; Park K; Choe YJ; Ham J; Kim WY
    J Chem Inf Model; 2019 Sep; 59(9):3981-3988. PubMed ID: 31443612
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ClusterX: a novel representation learning-based deep clustering framework for accurate visual inspection in virtual screening.
    Chen S; Gao J; Chen J; Xie Y; Shen Z; Xu L; Che J; Wu J; Dong X
    Brief Bioinform; 2023 May; 24(3):. PubMed ID: 37020333
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ligand binding affinity prediction with fusion of graph neural networks and 3D structure-based complex graph.
    Dong L; Shi S; Qu X; Luo D; Wang B
    Phys Chem Chem Phys; 2023 Sep; 25(35):24110-24120. PubMed ID: 37655493
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A New Hybrid Neural Network Deep Learning Method for Protein-Ligand Binding Affinity Prediction and De Novo Drug Design.
    Limbu S; Dakshanamurthy S
    Int J Mol Sci; 2022 Nov; 23(22):. PubMed ID: 36430386
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Energy-based graph convolutional networks for scoring protein docking models.
    Cao Y; Shen Y
    Proteins; 2020 Aug; 88(8):1091-1099. PubMed ID: 32144844
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predicting protein-ligand binding residues with deep convolutional neural networks.
    Cui Y; Dong Q; Hong D; Wang X
    BMC Bioinformatics; 2019 Feb; 20(1):93. PubMed ID: 30808287
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Employing Molecular Conformations for Ligand-Based Virtual Screening with Equivariant Graph Neural Network and Deep Multiple Instance Learning.
    Gu Y; Li J; Kang H; Zhang B; Zheng S
    Molecules; 2023 Aug; 28(16):. PubMed ID: 37630234
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deep Learning Model for Efficient Protein-Ligand Docking with Implicit Side-Chain Flexibility.
    Masters MR; Mahmoud AH; Wei Y; Lill MA
    J Chem Inf Model; 2023 Mar; 63(6):1695-1707. PubMed ID: 36916514
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DENVIS: Scalable and High-Throughput Virtual Screening Using Graph Neural Networks with Atomic and Surface Protein Pocket Features.
    Krasoulis A; Antonopoulos N; Pitsikalis V; Theodorakis S
    J Chem Inf Model; 2022 Oct; 62(19):4642-4659. PubMed ID: 36154119
    [TBL] [Abstract][Full Text] [Related]  

  • 11. GAABind: a geometry-aware attention-based network for accurate protein-ligand binding pose and binding affinity prediction.
    Tan H; Wang Z; Hu G
    Brief Bioinform; 2023 Nov; 25(1):. PubMed ID: 38102069
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Equivariant Line Graph Neural Network for Protein-Ligand Binding Affinity Prediction.
    Yi Y; Wan X; Zhao K; Ou-Yang L; Zhao P
    IEEE J Biomed Health Inform; 2024 Jul; 28(7):4336-4347. PubMed ID: 38551822
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multimodal deep representation learning for protein interaction identification and protein family classification.
    Zhang D; Kabuka M
    BMC Bioinformatics; 2019 Dec; 20(Suppl 16):531. PubMed ID: 31787089
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Binding affinity prediction for protein-ligand complex using deep attention mechanism based on intermolecular interactions.
    Seo S; Choi J; Park S; Ahn J
    BMC Bioinformatics; 2021 Nov; 22(1):542. PubMed ID: 34749664
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A point cloud-based deep learning strategy for protein-ligand binding affinity prediction.
    Wang Y; Wu S; Duan Y; Huang Y
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34849569
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improved Protein-Ligand Binding Affinity Prediction with Structure-Based Deep Fusion Inference.
    Jones D; Kim H; Zhang X; Zemla A; Stevenson G; Bennett WFD; Kirshner D; Wong SE; Lightstone FC; Allen JE
    J Chem Inf Model; 2021 Apr; 61(4):1583-1592. PubMed ID: 33754707
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient and accurate large library ligand docking with KarmaDock.
    Zhang X; Zhang O; Shen C; Qu W; Chen S; Cao H; Kang Y; Wang Z; Wang E; Zhang J; Deng Y; Liu F; Wang T; Du H; Wang L; Pan P; Chen G; Hsieh CY; Hou T
    Nat Comput Sci; 2023 Sep; 3(9):789-804. PubMed ID: 38177786
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Combining Docking Pose Rank and Structure with Deep Learning Improves Protein-Ligand Binding Mode Prediction over a Baseline Docking Approach.
    Morrone JA; Weber JK; Huynh T; Luo H; Cornell WD
    J Chem Inf Model; 2020 Sep; 60(9):4170-4179. PubMed ID: 32077698
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Boosting Protein-Ligand Binding Pose Prediction and Virtual Screening Based on Residue-Atom Distance Likelihood Potential and Graph Transformer.
    Shen C; Zhang X; Deng Y; Gao J; Wang D; Xu L; Pan P; Hou T; Kang Y
    J Med Chem; 2022 Aug; 65(15):10691-10706. PubMed ID: 35917397
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Boosted neural networks scoring functions for accurate ligand docking and ranking.
    Ashtawy HM; Mahapatra NR
    J Bioinform Comput Biol; 2018 Apr; 16(2):1850004. PubMed ID: 29495922
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.