These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
277 related articles for article (PubMed ID: 34878785)
1. InteractionGraphNet: A Novel and Efficient Deep Graph Representation Learning Framework for Accurate Protein-Ligand Interaction Predictions. Jiang D; Hsieh CY; Wu Z; Kang Y; Wang J; Wang E; Liao B; Shen C; Xu L; Wu J; Cao D; Hou T J Med Chem; 2021 Dec; 64(24):18209-18232. PubMed ID: 34878785 [TBL] [Abstract][Full Text] [Related]
2. Predicting Drug-Target Interaction Using a Novel Graph Neural Network with 3D Structure-Embedded Graph Representation. Lim J; Ryu S; Park K; Choe YJ; Ham J; Kim WY J Chem Inf Model; 2019 Sep; 59(9):3981-3988. PubMed ID: 31443612 [TBL] [Abstract][Full Text] [Related]
3. ClusterX: a novel representation learning-based deep clustering framework for accurate visual inspection in virtual screening. Chen S; Gao J; Chen J; Xie Y; Shen Z; Xu L; Che J; Wu J; Dong X Brief Bioinform; 2023 May; 24(3):. PubMed ID: 37020333 [TBL] [Abstract][Full Text] [Related]
4. Ligand binding affinity prediction with fusion of graph neural networks and 3D structure-based complex graph. Dong L; Shi S; Qu X; Luo D; Wang B Phys Chem Chem Phys; 2023 Sep; 25(35):24110-24120. PubMed ID: 37655493 [TBL] [Abstract][Full Text] [Related]
5. A New Hybrid Neural Network Deep Learning Method for Protein-Ligand Binding Affinity Prediction and De Novo Drug Design. Limbu S; Dakshanamurthy S Int J Mol Sci; 2022 Nov; 23(22):. PubMed ID: 36430386 [TBL] [Abstract][Full Text] [Related]
6. Energy-based graph convolutional networks for scoring protein docking models. Cao Y; Shen Y Proteins; 2020 Aug; 88(8):1091-1099. PubMed ID: 32144844 [TBL] [Abstract][Full Text] [Related]
7. Predicting protein-ligand binding residues with deep convolutional neural networks. Cui Y; Dong Q; Hong D; Wang X BMC Bioinformatics; 2019 Feb; 20(1):93. PubMed ID: 30808287 [TBL] [Abstract][Full Text] [Related]
8. Employing Molecular Conformations for Ligand-Based Virtual Screening with Equivariant Graph Neural Network and Deep Multiple Instance Learning. Gu Y; Li J; Kang H; Zhang B; Zheng S Molecules; 2023 Aug; 28(16):. PubMed ID: 37630234 [TBL] [Abstract][Full Text] [Related]
9. Deep Learning Model for Efficient Protein-Ligand Docking with Implicit Side-Chain Flexibility. Masters MR; Mahmoud AH; Wei Y; Lill MA J Chem Inf Model; 2023 Mar; 63(6):1695-1707. PubMed ID: 36916514 [TBL] [Abstract][Full Text] [Related]
10. DENVIS: Scalable and High-Throughput Virtual Screening Using Graph Neural Networks with Atomic and Surface Protein Pocket Features. Krasoulis A; Antonopoulos N; Pitsikalis V; Theodorakis S J Chem Inf Model; 2022 Oct; 62(19):4642-4659. PubMed ID: 36154119 [TBL] [Abstract][Full Text] [Related]
11. GAABind: a geometry-aware attention-based network for accurate protein-ligand binding pose and binding affinity prediction. Tan H; Wang Z; Hu G Brief Bioinform; 2023 Nov; 25(1):. PubMed ID: 38102069 [TBL] [Abstract][Full Text] [Related]
12. ERL-ProLiGraph: Enhanced representation learning on protein-ligand graph structured data for binding affinity prediction. Paendong GG; Ngnamsie Njimbouom S; Zonyfar C; Kim JD Mol Inform; 2024 Dec; 43(12):e202400044. PubMed ID: 39404190 [TBL] [Abstract][Full Text] [Related]
13. Equivariant Line Graph Neural Network for Protein-Ligand Binding Affinity Prediction. Yi Y; Wan X; Zhao K; Ou-Yang L; Zhao P IEEE J Biomed Health Inform; 2024 Jul; 28(7):4336-4347. PubMed ID: 38551822 [TBL] [Abstract][Full Text] [Related]
14. Multimodal deep representation learning for protein interaction identification and protein family classification. Zhang D; Kabuka M BMC Bioinformatics; 2019 Dec; 20(Suppl 16):531. PubMed ID: 31787089 [TBL] [Abstract][Full Text] [Related]
15. Binding affinity prediction for protein-ligand complex using deep attention mechanism based on intermolecular interactions. Seo S; Choi J; Park S; Ahn J BMC Bioinformatics; 2021 Nov; 22(1):542. PubMed ID: 34749664 [TBL] [Abstract][Full Text] [Related]
16. A point cloud-based deep learning strategy for protein-ligand binding affinity prediction. Wang Y; Wu S; Duan Y; Huang Y Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34849569 [TBL] [Abstract][Full Text] [Related]
17. Improved Protein-Ligand Binding Affinity Prediction with Structure-Based Deep Fusion Inference. Jones D; Kim H; Zhang X; Zemla A; Stevenson G; Bennett WFD; Kirshner D; Wong SE; Lightstone FC; Allen JE J Chem Inf Model; 2021 Apr; 61(4):1583-1592. PubMed ID: 33754707 [TBL] [Abstract][Full Text] [Related]
18. HTINet2: herb-target prediction via knowledge graph embedding and residual-like graph neural network. Duan P; Yang K; Su X; Fan S; Dong X; Zhang F; Li X; Xing X; Zhu Q; Yu J; Zhou X Brief Bioinform; 2024 Jul; 25(5):. PubMed ID: 39175133 [TBL] [Abstract][Full Text] [Related]
19. Efficient and accurate large library ligand docking with KarmaDock. Zhang X; Zhang O; Shen C; Qu W; Chen S; Cao H; Kang Y; Wang Z; Wang E; Zhang J; Deng Y; Liu F; Wang T; Du H; Wang L; Pan P; Chen G; Hsieh CY; Hou T Nat Comput Sci; 2023 Sep; 3(9):789-804. PubMed ID: 38177786 [TBL] [Abstract][Full Text] [Related]
20. Combining Docking Pose Rank and Structure with Deep Learning Improves Protein-Ligand Binding Mode Prediction over a Baseline Docking Approach. Morrone JA; Weber JK; Huynh T; Luo H; Cornell WD J Chem Inf Model; 2020 Sep; 60(9):4170-4179. PubMed ID: 32077698 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]