These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

271 related articles for article (PubMed ID: 34878785)

  • 21. GraphPLBR: Protein-Ligand Binding Residue Prediction With Deep Graph Convolution Network.
    Wang W; Sun B; Yu M; Wu S; Liu D; Zhang H; Zhou Y
    IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(3):2223-2232. PubMed ID: 37022086
    [TBL] [Abstract][Full Text] [Related]  

  • 22. ResBiGAAT: Residual Bi-GRU with attention for protein-ligand binding affinity prediction.
    Aly Abdelkader G; Ngnamsie Njimbouom S; Oh TJ; Kim JD
    Comput Biol Chem; 2023 Dec; 107():107969. PubMed ID: 37866117
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Leveraging scaffold information to predict protein-ligand binding affinity with an empirical graph neural network.
    Xia C; Feng SH; Xia Y; Pan X; Shen HB
    Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36627113
    [TBL] [Abstract][Full Text] [Related]  

  • 24. From Proteins to Ligands: Decoding Deep Learning Methods for Binding Affinity Prediction.
    Gorantla R; Kubincová A; Weiße AY; Mey ASJS
    J Chem Inf Model; 2024 Apr; 64(7):2496-2507. PubMed ID: 37983381
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A new paradigm for applying deep learning to protein-ligand interaction prediction.
    Wang Z; Wang S; Li Y; Guo J; Wei Y; Mu Y; Zheng L; Li W
    Brief Bioinform; 2024 Mar; 25(3):. PubMed ID: 38581420
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Interaction-Based Inductive Bias in Graph Neural Networks: Enhancing Protein-Ligand Binding Affinity Predictions From 3D Structures.
    Yang Z; Zhong W; Lv Q; Dong T; Chen G; Chen CY
    IEEE Trans Pattern Anal Mach Intell; 2024 May; PP():. PubMed ID: 38739515
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Geometric Interaction Graph Neural Network for Predicting Protein-Ligand Binding Affinities from 3D Structures (GIGN).
    Yang Z; Zhong W; Lv Q; Dong T; Yu-Chian Chen C
    J Phys Chem Lett; 2023 Mar; 14(8):2020-2033. PubMed ID: 36794930
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Persistent spectral hypergraph based machine learning (PSH-ML) for protein-ligand binding affinity prediction.
    Liu X; Feng H; Wu J; Xia K
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33837771
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Deep Scoring Neural Network Replacing the Scoring Function Components to Improve the Performance of Structure-Based Molecular Docking.
    Yang L; Yang G; Chen X; Yang Q; Yao X; Bing Z; Niu Y; Huang L; Yang L
    ACS Chem Neurosci; 2021 Jun; 12(12):2133-2142. PubMed ID: 34081851
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Evaluation of deep and shallow learning methods in chemogenomics for the prediction of drugs specificity.
    Playe B; Stoven V
    J Cheminform; 2020 Feb; 12(1):11. PubMed ID: 33431042
    [TBL] [Abstract][Full Text] [Related]  

  • 31. MetalProGNet: a structure-based deep graph model for metalloprotein-ligand interaction predictions.
    Jiang D; Ye Z; Hsieh CY; Yang Z; Zhang X; Kang Y; Du H; Wu Z; Wang J; Zeng Y; Zhang H; Wang X; Wang M; Yao X; Zhang S; Wu J; Hou T
    Chem Sci; 2023 Feb; 14(8):2054-2069. PubMed ID: 36845922
    [TBL] [Abstract][Full Text] [Related]  

  • 32. DeepBindGCN: Integrating Molecular Vector Representation with Graph Convolutional Neural Networks for Protein-Ligand Interaction Prediction.
    Zhang H; Saravanan KM; Zhang JZH
    Molecules; 2023 Jun; 28(12):. PubMed ID: 37375246
    [TBL] [Abstract][Full Text] [Related]  

  • 33. DeepDTAF: a deep learning method to predict protein-ligand binding affinity.
    Wang K; Zhou R; Li Y; Li M
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33834190
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Development and evaluation of a deep learning model for protein-ligand binding affinity prediction.
    Stepniewska-Dziubinska MM; Zielenkiewicz P; Siedlecki P
    Bioinformatics; 2018 Nov; 34(21):3666-3674. PubMed ID: 29757353
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Drug-target interaction prediction using semi-bipartite graph model and deep learning.
    Eslami Manoochehri H; Nourani M
    BMC Bioinformatics; 2020 Jul; 21(Suppl 4):248. PubMed ID: 32631230
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Intra-Inter Graph Representation Learning for Protein-Protein Binding Sites Prediction.
    Zhao W; Xu G; Wang L; Cui Z; Zhang T; Yang J
    IEEE/ACM Trans Comput Biol Bioinform; 2024 Jun; PP():. PubMed ID: 38896523
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Affinity prediction using deep learning based on SMILES input for D3R grand challenge 4.
    Lim S; Lee YO; Yoon J; Kim YJ
    J Comput Aided Mol Des; 2022 Mar; 36(3):225-235. PubMed ID: 35314897
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Computational representations of protein-ligand interfaces for structure-based virtual screening.
    Qin T; Zhu Z; Wang XS; Xia J; Wu S
    Expert Opin Drug Discov; 2021 Oct; 16(10):1175-1192. PubMed ID: 34011222
    [No Abstract]   [Full Text] [Related]  

  • 39. End-to-end sequence-structure-function meta-learning predicts genome-wide chemical-protein interactions for dark proteins.
    Cai T; Xie L; Zhang S; Chen M; He D; Badkul A; Liu Y; Namballa HK; Dorogan M; Harding WW; Mura C; Bourne PE; Xie L
    PLoS Comput Biol; 2023 Jan; 19(1):e1010851. PubMed ID: 36652496
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Out-of-the-box deep learning prediction of quantum-mechanical partial charges by graph representation and transfer learning.
    Jiang D; Sun H; Wang J; Hsieh CY; Li Y; Wu Z; Cao D; Wu J; Hou T
    Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35062020
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.