These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
169 related articles for article (PubMed ID: 34878830)
1. Diurnal metabolic control in cyanobacteria requires perception of second messenger signaling molecule c-di-AMP by the carbon control protein SbtB. Selim KA; Haffner M; Burkhardt M; Mantovani O; Neumann N; Albrecht R; Seifert R; Krüger L; Stülke J; Hartmann MD; Hagemann M; Forchhammer K Sci Adv; 2021 Dec; 7(50):eabk0568. PubMed ID: 34878830 [TBL] [Abstract][Full Text] [Related]
2. Roles of second messengers in the regulation of cyanobacterial physiology: the carbon-concentrating mechanism and beyond. Mantovani O; Haffner M; Selim KA; Hagemann M; Forchhammer K Microlife; 2023; 4():uqad008. PubMed ID: 37223741 [TBL] [Abstract][Full Text] [Related]
3. Carbon signaling protein SbtB possesses atypical redox-regulated apyrase activity to facilitate regulation of bicarbonate transporter SbtA. Selim KA; Haffner M; Mantovani O; Albrecht R; Zhu H; Hagemann M; Forchhammer K; Hartmann MD Proc Natl Acad Sci U S A; 2023 Feb; 120(8):e2205882120. PubMed ID: 36800386 [TBL] [Abstract][Full Text] [Related]
4. P Selim KA; Haase F; Hartmann MD; Hagemann M; Forchhammer K Proc Natl Acad Sci U S A; 2018 May; 115(21):E4861-E4869. PubMed ID: 29735650 [TBL] [Abstract][Full Text] [Related]
5. The impact of the cyanobacterial carbon-regulator protein SbtB and of the second messengers cAMP and c-di-AMP on CO Mantovani O; Reimann V; Haffner M; Herrmann FP; Selim KA; Forchhammer K; Hess WR; Hagemann M New Phytol; 2022 Jun; 234(5):1801-1816. PubMed ID: 35285042 [TBL] [Abstract][Full Text] [Related]
6. The redox-sensitive R-loop of the carbon control protein SbtB contributes to the regulation of the cyanobacterial CCM. Mantovani O; Haffner M; Walke P; Elshereef AA; Wagner B; Petras D; Forchhammer K; Selim KA; Hagemann M Sci Rep; 2024 Apr; 14(1):7885. PubMed ID: 38570698 [TBL] [Abstract][Full Text] [Related]
7. Structural Basis for the Allosteric Regulation of the SbtA Bicarbonate Transporter by the P Kaczmarski JA; Hong NS; Mukherjee B; Wey LT; Rourke L; Förster B; Peat TS; Price GD; Jackson CJ Biochemistry; 2019 Dec; 58(50):5030-5039. PubMed ID: 31746199 [TBL] [Abstract][Full Text] [Related]
8. High-throughput interaction screens illuminate the role of c-di-AMP in cyanobacterial nighttime survival. Rubin BE; Huynh TN; Welkie DG; Diamond S; Simkovsky R; Pierce EC; Taton A; Lowe LC; Lee JJ; Rifkin SA; Woodward JJ; Golden SS PLoS Genet; 2018 Apr; 14(4):e1007301. PubMed ID: 29608558 [TBL] [Abstract][Full Text] [Related]
9. Homeostasis of Second Messenger Cyclic-di-AMP Is Critical for Cyanobacterial Fitness and Acclimation to Abiotic Stress. Agostoni M; Logan-Jackson AR; Heinz ER; Severin GB; Bruger EL; Waters CM; Montgomery BL Front Microbiol; 2018; 9():1121. PubMed ID: 29896182 [TBL] [Abstract][Full Text] [Related]
10. The cyclic dinucleotide c-di-AMP is an allosteric regulator of metabolic enzyme function. Sureka K; Choi PH; Precit M; Delince M; Pensinger DA; Huynh TN; Jurado AR; Goo YA; Sadilek M; Iavarone AT; Sauer JD; Tong L; Woodward JJ Cell; 2014 Sep; 158(6):1389-1401. PubMed ID: 25215494 [TBL] [Abstract][Full Text] [Related]
11. Stress Suppressor Screening Leads to Detection of Regulation of Cyclic di-AMP Homeostasis by a Trk Family Effector Protein in Streptococcus pneumoniae. Zarrella TM; Metzger DW; Bai G J Bacteriol; 2018 Jun; 200(12):. PubMed ID: 29483167 [TBL] [Abstract][Full Text] [Related]
12. Replenishing the cyclic-di-AMP pool: regulation of diadenylate cyclase activity in bacteria. Pham TH; Liang ZX; Marcellin E; Turner MS Curr Genet; 2016 Nov; 62(4):731-738. PubMed ID: 27074767 [TBL] [Abstract][Full Text] [Related]
13. Identification of the Components Involved in Cyclic Di-AMP Signaling in Blötz C; Treffon K; Kaever V; Schwede F; Hammer E; Stülke J Front Microbiol; 2017; 8():1328. PubMed ID: 28751888 [TBL] [Abstract][Full Text] [Related]
14. The Many Roles of the Bacterial Second Messenger Cyclic di-AMP in Adapting to Stress Cues. Zarrella TM; Bai G J Bacteriol; 2020 Dec; 203(1):. PubMed ID: 32839175 [TBL] [Abstract][Full Text] [Related]
15. Cyclic Di-adenosine Monophosphate Regulates Metabolism and Growth in the Oral Commensal Rørvik GH; Liskiewicz KA; Kryuchkov F; Naemi AO; Aasheim HC; Petersen FC; Küntziger TM; Simm R Microorganisms; 2020 Aug; 8(9):. PubMed ID: 32825526 [TBL] [Abstract][Full Text] [Related]
16. Nuclease-Resistant c-di-AMP Derivatives That Differentially Recognize RNA and Protein Receptors. Meehan RE; Torgerson CD; Gaffney BL; Jones RA; Strobel SA Biochemistry; 2016 Feb; 55(6):837-49. PubMed ID: 26789423 [TBL] [Abstract][Full Text] [Related]
17. Cyclic di-AMP Oversight of Counter-Ion Osmolyte Pools Impacts Intrinsic Cefuroxime Resistance in Lactococcus lactis. Pham HT; Shi W; Xiang Y; Foo SY; Plan MR; Courtin P; Chapot-Chartier MP; Smid EJ; Liang ZX; Marcellin E; Turner MS mBio; 2021 Apr; 12(2):. PubMed ID: 33832972 [TBL] [Abstract][Full Text] [Related]
18. Molecular mechanism underlying transport and allosteric inhibition of bicarbonate transporter SbtA. Fang S; Huang X; Zhang X; Zhang M; Hao Y; Guo H; Liu LN; Yu F; Zhang P Proc Natl Acad Sci U S A; 2021 Jun; 118(22):. PubMed ID: 34031249 [TBL] [Abstract][Full Text] [Related]
19. A jack of all trades: the multiple roles of the unique essential second messenger cyclic di-AMP. Commichau FM; Dickmanns A; Gundlach J; Ficner R; Stülke J Mol Microbiol; 2015 Jul; 97(2):189-204. PubMed ID: 25869574 [TBL] [Abstract][Full Text] [Related]
20. Tetragonal crystal form of the cyanobacterial bicarbonate-transporter regulator SbtB from Synechocystis sp. PCC 6803. Bu G; Simmons CR; Nielsen DR; Nannenga BL Acta Crystallogr F Struct Biol Commun; 2020 Sep; 76(Pt 9):438-443. PubMed ID: 32880592 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]