These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 34879263)

  • 1. Rapid and robust optogenetic control of gene expression in Drosophila.
    di Pietro F; Herszterg S; Huang A; Bosveld F; Alexandre C; Sancéré L; Pelletier S; Joudat A; Kapoor V; Vincent JP; Bellaïche Y
    Dev Cell; 2021 Dec; 56(24):3393-3404.e7. PubMed ID: 34879263
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Single-Component Optogenetic Gal4-UAS System Allows Stringent Control of Gene Expression in Zebrafish and Drosophila.
    Qian Y; Li T; Zhou S; Chen X; Yang Y
    ACS Synth Biol; 2023 Mar; 12(3):664-671. PubMed ID: 36891673
    [TBL] [Abstract][Full Text] [Related]  

  • 3. GAL4/UAS targeted gene expression for studying Drosophila Hedgehog signaling.
    Busson D; Pret AM
    Methods Mol Biol; 2007; 397():161-201. PubMed ID: 18025721
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The commonly used eye-specific sev-GAL4 and GMR-GAL4 drivers in Drosophila melanogaster are expressed in tissues other than eyes also.
    Ray M; Lakhotia SC
    J Genet; 2015 Sep; 94(3):407-16. PubMed ID: 26440079
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A hormone receptor-based transactivator bridges different binary systems to precisely control spatial-temporal gene expression in Drosophila.
    Kuo SY; Tu CH; Hsu YT; Wang HD; Wen RK; Lin CT; Wu CL; Huang YT; Huang GS; Lan TH; Fu TF
    PLoS One; 2012; 7(12):e50855. PubMed ID: 23239992
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optogenetic Control of Gene Expression in Drosophila.
    Chan YB; Alekseyenko OV; Kravitz EA
    PLoS One; 2015; 10(9):e0138181. PubMed ID: 26383635
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Flexible manipulation of Omb levels in the endogenous expression region of Drosophila wing by combinational overexpression and suppression strategy.
    Zhang XB; Dong W; Li KX; Wang JJ; Shen J; Moussian B; Zhang JZ
    Insect Sci; 2020 Feb; 27(1):14-21. PubMed ID: 31246335
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular and cytological analysis of widely-used Gal4 driver lines for Drosophila neurobiology.
    Ogienko AA; Andreyeva EN; Omelina ES; Oshchepkova AL; Pindyurin AV
    BMC Genet; 2020 Oct; 21(Suppl 1):96. PubMed ID: 33092520
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Targeted gain-of-function screening in Drosophila using GAL4-UAS and random transposon insertions.
    Zhong J; Yedvobnick B
    Genet Res (Camb); 2009 Aug; 91(4):243-58. PubMed ID: 19640320
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A gene-specific
    Lee PT; Zirin J; Kanca O; Lin WW; Schulze KL; Li-Kroeger D; Tao R; Devereaux C; Hu Y; Chung V; Fang Y; He Y; Pan H; Ge M; Zuo Z; Housden BE; Mohr SE; Yamamoto S; Levis RW; Spradling AC; Perrimon N; Bellen HJ
    Elife; 2018 Mar; 7():. PubMed ID: 29565247
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ectopic expression in commonly used transgenic Drosophila GAL4 driver lines.
    Winant M; Buhler K; Callaerts P
    Genesis; 2024 Apr; 62(2):e23600. PubMed ID: 38665068
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A LexAop > UAS > QUAS trimeric plasmid to generate inducible and interconvertible Drosophila overexpression transgenes.
    Wendler F; Park S; Hill C; Galasso A; Chang KR; Awan I; Sudarikova Y; Bustamante-Sequeiros M; Liu S; Sung EY; Aisa-Bonoko G; Kim SK; Baena-Lopez LA
    Sci Rep; 2022 Mar; 12(1):3835. PubMed ID: 35264662
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative analysis of the GAL4/UAS system in Drosophila oogenesis.
    Goentoro LA; Yakoby N; Goodhouse J; Schüpbach T; Shvartsman SY
    Genesis; 2006 Feb; 44(2):66-74. PubMed ID: 16425298
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A broad expression profile of the GMR-GAL4 driver in Drosophila melanogaster.
    Li WZ; Li SL; Zheng HY; Zhang SP; Xue L
    Genet Mol Res; 2012 Aug; 11(3):1997-2002. PubMed ID: 22911584
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optogenetics in Drosophila.
    Kohsaka H; Nose A
    Adv Exp Med Biol; 2021; 1293():309-320. PubMed ID: 33398822
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Arm-Gal4 inheritance influences development and lifespan in Drosophila melanogaster.
    Slade FA; Staveley BE
    Genet Mol Res; 2015 Oct; 14(4):12788-96. PubMed ID: 26505429
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optogenetic Rescue of a Patterning Mutant.
    Johnson HE; Djabrayan NJV; Shvartsman SY; Toettcher JE
    Curr Biol; 2020 Sep; 30(17):3414-3424.e3. PubMed ID: 32707057
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gal4 Driver Transgenic Zebrafish: Powerful Tools to Study Developmental Biology, Organogenesis, and Neuroscience.
    Kawakami K; Asakawa K; Hibi M; Itoh M; Muto A; Wada H
    Adv Genet; 2016; 95():65-87. PubMed ID: 27503354
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A gain-of-function screen identifying genes required for growth and pattern formation of the Drosophila melanogaster wing.
    Cruz C; Glavic A; Casado M; de Celis JF
    Genetics; 2009 Nov; 183(3):1005-26. PubMed ID: 19737745
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functionality of the GAL4/UAS system in Tribolium requires the use of endogenous core promoters.
    Schinko JB; Weber M; Viktorinova I; Kiupakis A; Averof M; Klingler M; Wimmer EA; Bucher G
    BMC Dev Biol; 2010 May; 10():53. PubMed ID: 20482875
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.