BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 34879283)

  • 1. Autism risk gene POGZ promotes chromatin accessibility and expression of clustered synaptic genes.
    Markenscoff-Papadimitriou E; Binyameen F; Whalen S; Price J; Lim K; Ypsilanti AR; Catta-Preta R; Pai EL; Mu X; Xu D; Pollard KS; Nord AS; State MW; Rubenstein JL
    Cell Rep; 2021 Dec; 37(10):110089. PubMed ID: 34879283
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A convergent mechanism of high risk factors ADNP and POGZ in neurodevelopmental disorders.
    Conrow-Graham M; Williams JB; Martin J; Zhong P; Cao Q; Rein B; Yan Z
    Brain; 2022 Sep; 145(9):3250-3263. PubMed ID: 35775424
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intranasal oxytocin administration ameliorates social behavioral deficits in a POGZ
    Kitagawa K; Matsumura K; Baba M; Kondo M; Takemoto T; Nagayasu K; Ago Y; Seiriki K; Hayata-Takano A; Kasai A; Takuma K; Hashimoto R; Hashimoto H; Nakazawa T
    Mol Brain; 2021 Mar; 14(1):56. PubMed ID: 33726803
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pogz deficiency leads to transcription dysregulation and impaired cerebellar activity underlying autism-like behavior in mice.
    Suliman-Lavie R; Title B; Cohen Y; Hamada N; Tal M; Tal N; Monderer-Rothkoff G; Gudmundsdottir B; Gudmundsson KO; Keller JR; Huang GJ; Nagata KI; Yarom Y; Shifman S
    Nat Commun; 2020 Nov; 11(1):5836. PubMed ID: 33203851
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pathogenic POGZ mutation causes impaired cortical development and reversible autism-like phenotypes.
    Matsumura K; Seiriki K; Okada S; Nagase M; Ayabe S; Yamada I; Furuse T; Shibuya H; Yasuda Y; Yamamori H; Fujimoto M; Nagayasu K; Yamamoto K; Kitagawa K; Miura H; Gotoda-Nishimura N; Igarashi H; Hayashida M; Baba M; Kondo M; Hasebe S; Ueshima K; Kasai A; Ago Y; Hayata-Takano A; Shintani N; Iguchi T; Sato M; Yamaguchi S; Tamura M; Wakana S; Yoshiki A; Watabe AM; Okano H; Takuma K; Hashimoto R; Hashimoto H; Nakazawa T
    Nat Commun; 2020 Feb; 11(1):859. PubMed ID: 32103003
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Loss of POGZ alters neural differentiation of human embryonic stem cells.
    Deng L; Mojica-Perez SP; Azaria RD; Schultz M; Parent JM; Niu W
    Mol Cell Neurosci; 2022 May; 120():103727. PubMed ID: 35367590
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exploring the molecular pathways linking sleep phenotypes and
    Marquezini BP; Moysés-Oliveira M; Kloster A; Cunha L; Deconto TB; Mosini AC; Guerreiro P; Paschalidis M; Adami LNG; Andersen ML; Tufik S
    J Med Genet; 2024 May; 61(6):586-589. PubMed ID: 38350721
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Expression Analyses of POGZ, A Responsible Gene for Neurodevelopmental Disorders, during Mouse Brain Development.
    Ibaraki K; Hamada N; Iwamoto I; Ito H; Kawamura N; Morishita R; Tabata H; Nagata KI
    Dev Neurosci; 2019; 41(1-2):139-148. PubMed ID: 31430754
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rare inherited missense variants of POGZ associate with autism risk and disrupt neuronal development.
    Zhao W; Tan J; Zhu T; Ou J; Li Y; Shen L; Wu H; Han L; Liu Y; Jia X; Bai T; Li H; Ke X; Zhao J; Zou X; Hu Z; Guo H; Xia K
    J Genet Genomics; 2019 May; 46(5):247-257. PubMed ID: 31196716
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A case of autism spectrum disorder arising from a de novo missense mutation in POGZ.
    Fukai R; Hiraki Y; Yofune H; Tsurusaki Y; Nakashima M; Saitsu H; Tanaka F; Miyake N; Matsumoto N
    J Hum Genet; 2015 May; 60(5):277-9. PubMed ID: 25694107
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Autism-associated protein POGZ controls ESCs and ESC neural induction by association with esBAF.
    Sun X; Cheng L; Sun Y
    Mol Autism; 2022 Jun; 13(1):24. PubMed ID: 35650610
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analyses of Conditional Knockout Mice for
    Hamada N; Nishijo T; Iwamoto I; Shifman S; Nagata KI
    Cells; 2024 Mar; 13(6):. PubMed ID: 38534384
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Learning-dependent chromatin remodeling highlights noncoding regulatory regions linked to autism.
    Koberstein JN; Poplawski SG; Wimmer ME; Porcari G; Kao C; Gomes B; Risso D; Hakonarson H; Zhang NR; Schultz RT; Abel T; Peixoto L
    Sci Signal; 2018 Jan; 11(513):. PubMed ID: 29339533
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Disruption of POGZ Is Associated with Intellectual Disability and Autism Spectrum Disorders.
    Stessman HAF; Willemsen MH; Fenckova M; Penn O; Hoischen A; Xiong B; Wang T; Hoekzema K; Vives L; Vogel I; Brunner HG; van der Burgt I; Ockeloen CW; Schuurs-Hoeijmakers JH; Klein Wassink-Ruiter JS; Stumpel C; Stevens SJC; Vles HS; Marcelis CM; van Bokhoven H; Cantagrel V; Colleaux L; Nicouleau M; Lyonnet S; Bernier RA; Gerdts J; Coe BP; Romano C; Alberti A; Grillo L; Scuderi C; Nordenskjöld M; Kvarnung M; Guo H; Xia K; Piton A; Gerard B; Genevieve D; Delobel B; Lehalle D; Perrin L; Prieur F; Thevenon J; Gecz J; Shaw M; Pfundt R; Keren B; Jacquette A; Schenck A; Eichler EE; Kleefstra T
    Am J Hum Genet; 2016 Mar; 98(3):541-552. PubMed ID: 26942287
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Activity-dependent neuroprotective protein recruits HP1 and CHD4 to control lineage-specifying genes.
    Ostapcuk V; Mohn F; Carl SH; Basters A; Hess D; Iesmantavicius V; Lampersberger L; Flemr M; Pandey A; Thomä NH; Betschinger J; Bühler M
    Nature; 2018 May; 557(7707):739-743. PubMed ID: 29795351
    [TBL] [Abstract][Full Text] [Related]  

  • 16. POGZ suppresses 2C transcriptional program and retrotransposable elements.
    Sun X; Zhang T; Tong B; Cheng L; Jiang W; Sun Y
    Cell Rep; 2023 Aug; 42(8):112867. PubMed ID: 37494184
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neuropsychological study in 19 French patients with White-Sutton syndrome and POGZ mutations.
    Garde A; Cornaton J; Sorlin A; Moutton S; Nicolas C; Juif C; Geneviève D; Perrin L; Khau-Van-Kien P; Smol T; Vincent-Delorme C; Isidor B; Cogné B; Afenjar A; Keren B; Coubes C; Prieur F; Toutain A; Trousselet Y; Bourgouin S; Gonin-Olympiade C; Giraudat K; Piton A; Gérard B; Odent S; Tessier F; Lemasson L; Heide S; Gelineau AC; Sarret C; Miret A; Schaefer E; Piard J; Mathevet R; Boucon M; Bruel AL; Mau-Them FT; Chevarin M; Vitobello A; Philippe C; Thauvin-Robinet C; Faivre L
    Clin Genet; 2021 Mar; 99(3):407-417. PubMed ID: 33277917
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Chromatin Accessibility Atlas of the Developing Human Telencephalon.
    Markenscoff-Papadimitriou E; Whalen S; Przytycki P; Thomas R; Binyameen F; Nowakowski TJ; Kriegstein AR; Sanders SJ; State MW; Pollard KS; Rubenstein JL
    Cell; 2020 Aug; 182(3):754-769.e18. PubMed ID: 32610082
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pleiotropy of autism-associated chromatin regulators.
    Lasser M; Sun N; Xu Y; Wang S; Drake S; Law K; Gonzalez S; Wang B; Drury V; Castillo O; Zaltsman Y; Dea J; Bader E; McCluskey KE; State MW; Willsey AJ; Willsey HR
    Development; 2023 Jul; 150(14):. PubMed ID: 37366052
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional DNA methylation signatures for autism spectrum disorder genomic risk loci: 16p11.2 deletions and CHD8 variants.
    Siu MT; Butcher DT; Turinsky AL; Cytrynbaum C; Stavropoulos DJ; Walker S; Caluseriu O; Carter M; Lou Y; Nicolson R; Georgiades S; Szatmari P; Anagnostou E; Scherer SW; Choufani S; Brudno M; Weksberg R
    Clin Epigenetics; 2019 Jul; 11(1):103. PubMed ID: 31311581
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.