These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
315 related articles for article (PubMed ID: 34879285)
1. Current state-of-the-art of separation methods used in LC-MS based metabolomics and lipidomics. Harrieder EM; Kretschmer F; Böcker S; Witting M J Chromatogr B Analyt Technol Biomed Life Sci; 2022 Jan; 1188():123069. PubMed ID: 34879285 [TBL] [Abstract][Full Text] [Related]
2. Evaluation of coverage, retention patterns, and selectivity of seven liquid chromatographic methods for metabolomics. Wernisch S; Pennathur S Anal Bioanal Chem; 2016 Sep; 408(22):6079-91. PubMed ID: 27370688 [TBL] [Abstract][Full Text] [Related]
3. Metabolomics and lipidomics using traveling-wave ion mobility mass spectrometry. Paglia G; Astarita G Nat Protoc; 2017 Apr; 12(4):797-813. PubMed ID: 28301461 [TBL] [Abstract][Full Text] [Related]
4. Tailored liquid chromatography-mass spectrometry analysis improves the coverage of the intracellular metabolome of HepaRG cells. Cuykx M; Negreira N; Beirnaert C; Van den Eede N; Rodrigues R; Vanhaecke T; Laukens K; Covaci A J Chromatogr A; 2017 Mar; 1487():168-178. PubMed ID: 28153450 [TBL] [Abstract][Full Text] [Related]
5. SWATH-MS for metabolomics and lipidomics: critical aspects of qualitative and quantitative analysis. Raetz M; Bonner R; Hopfgartner G Metabolomics; 2020 Jun; 16(6):71. PubMed ID: 32504120 [TBL] [Abstract][Full Text] [Related]
6. Mass Spectrometry-Based Untargeted Metabolomics and Lipidomics Platforms to Analyze Cell Culture Extracts. Iturrospe E; da Silva KM; van de Lavoir M; Robeyns R; Cuykx M; Vanhaecke T; van Nuijs ALN; Covaci A Methods Mol Biol; 2023; 2571():189-206. PubMed ID: 36152163 [TBL] [Abstract][Full Text] [Related]
7. Recent advances of chromatography and mass spectrometry in lipidomics. Li M; Zhou Z; Nie H; Bai Y; Liu H Anal Bioanal Chem; 2011 Jan; 399(1):243-9. PubMed ID: 21052649 [TBL] [Abstract][Full Text] [Related]
8. Supercritical fluid chromatography - Mass spectrometry in metabolomics: Past, present, and future perspectives. van de Velde B; Guillarme D; Kohler I J Chromatogr B Analyt Technol Biomed Life Sci; 2020 Dec; 1161():122444. PubMed ID: 33246285 [TBL] [Abstract][Full Text] [Related]
9. Evaluation and correction of injection order effects in LC-MS/MS based targeted metabolomics. Yue Y; Bao X; Jiang J; Li J J Chromatogr B Analyt Technol Biomed Life Sci; 2022 Dec; 1212():123513. PubMed ID: 36283260 [TBL] [Abstract][Full Text] [Related]
10. An exploratory approach for an oriented development of an untargeted hydrophilic interaction liquid chromatography-mass spectrometry platform for polar metabolites in biological matrices. Iturrospe E; Da Silva KM; Talavera Andújar B; Cuykx M; Boeckmans J; Vanhaecke T; Covaci A; van Nuijs ALN J Chromatogr A; 2021 Jan; 1637():461807. PubMed ID: 33360078 [TBL] [Abstract][Full Text] [Related]
11. Comparison of underivatized silica and zwitterionic sulfobetaine hydrophilic interaction liquid chromatography stationary phases for global metabolomics of human plasma. Sonnenberg RA; Naz S; Cougnaud L; Vuckovic D J Chromatogr A; 2019 Dec; 1608():460419. PubMed ID: 31439439 [TBL] [Abstract][Full Text] [Related]
12. Comparison of chromatographic conditions for the targeted tandem mass spectrometric determination of 354 mammalian metabolites. Floros DJ; Xu K; Berthiller F; Schwartz-Zimmermann H J Chromatogr A; 2023 May; 1697():463985. PubMed ID: 37062154 [TBL] [Abstract][Full Text] [Related]
13. Merging metabolomics and lipidomics into one analytical run. Schwaiger M; Schoeny H; El Abiead Y; Hermann G; Rampler E; Koellensperger G Analyst; 2018 Dec; 144(1):220-229. PubMed ID: 30411762 [TBL] [Abstract][Full Text] [Related]
14. Probing the application range and selectivity of a differential mobility spectrometry-mass spectrometry platform for metabolomics. Wernisch S; Afshinnia F; Rajendiran T; Pennathur S Anal Bioanal Chem; 2018 May; 410(12):2865-2877. PubMed ID: 29532192 [TBL] [Abstract][Full Text] [Related]
15. Development of a single mobile phase for LC-IM-MS-based discovery lipidomics and metabolic phenotyping: Application to methapyrilene hepatotoxicity in the rat. Wilson ID; Broeckling C; Gethings LA; Munjoma NC; Trengove R; Rainville PD; Lai SK; Isaac G; Plumb RS J Chromatogr A; 2024 Jan; 1714():464552. PubMed ID: 38113579 [TBL] [Abstract][Full Text] [Related]
16. Human Cerebrospinal Fluid Sample Preparation and Annotation for Integrated Lipidomics and Metabolomics Profiling Studies. Hooshmand K; Xu J; Simonsen AH; Wretlind A; de Zawadzki A; Sulek K; Hasselbalch SG; Legido-Quigley C Mol Neurobiol; 2024 Apr; 61(4):2021-2032. PubMed ID: 37843799 [TBL] [Abstract][Full Text] [Related]
17. Alternate reversed-phase and hydrophilic interaction liquid chromatography coupled with mass spectrometry for broad coverage in metabolomics analysis. Lv W; Guo L; Zheng F; Wang Q; Wang W; Cui L; Ouyang Y; Liu X; Li E; Shi X; Xu G J Chromatogr B Analyt Technol Biomed Life Sci; 2020 Sep; 1152():122266. PubMed ID: 32693368 [TBL] [Abstract][Full Text] [Related]
18. Rational selection of reverse phase columns for high throughput LC-MS lipidomics. Criscuolo A; Zeller M; Cook K; Angelidou G; Fedorova M Chem Phys Lipids; 2019 Jul; 221():120-127. PubMed ID: 30940444 [TBL] [Abstract][Full Text] [Related]
19. Fast and broad-coverage lipidomics enabled by ion mobility-mass spectrometry. Cai Y; Chen X; Ren F; Wang H; Yin Y; Zhu ZJ Analyst; 2024 Oct; 149(20):5063-5072. PubMed ID: 39219503 [TBL] [Abstract][Full Text] [Related]
20. Simultaneous non-polar and polar lipid analysis by on-line combination of HILIC, RP and high resolution MS. Rampler E; Schoeny H; Mitic BM; El Abiead Y; Schwaiger M; Koellensperger G Analyst; 2018 Feb; 143(5):1250-1258. PubMed ID: 29431763 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]