BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 34879303)

  • 1. Emerging artificial metalloenzymes for asymmetric hydrogenation reactions.
    Goralski ST; Rose MJ
    Curr Opin Chem Biol; 2022 Feb; 66():102096. PubMed ID: 34879303
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Artificial Metalloenzymes Based on the Biotin-Streptavidin Technology: Challenges and Opportunities.
    Heinisch T; Ward TR
    Acc Chem Res; 2016 Sep; 49(9):1711-21. PubMed ID: 27529561
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Artificial Metalloenzymes Based on the Biotin-Streptavidin Technology: Enzymatic Cascades and Directed Evolution.
    Liang AD; Serrano-Plana J; Peterson RL; Ward TR
    Acc Chem Res; 2019 Mar; 52(3):585-595. PubMed ID: 30735358
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Artificial metalloenzymes based on the biotin-avidin technology: enantioselective catalysis and beyond.
    Ward TR
    Acc Chem Res; 2011 Jan; 44(1):47-57. PubMed ID: 20949947
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Breaking Symmetry: Engineering Single-Chain Dimeric Streptavidin as Host for Artificial Metalloenzymes.
    Wu S; Zhou Y; Rebelein JG; Kuhn M; Mallin H; Zhao J; Igareta NV; Ward TR
    J Am Chem Soc; 2019 Oct; 141(40):15869-15878. PubMed ID: 31509711
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Manganese Transfer Hydrogenases Based on the Biotin-Streptavidin Technology.
    Wang W; Tachibana R; Zou Z; Chen D; Zhang X; Lau K; Pojer F; Ward TR; Hu X
    Angew Chem Int Ed Engl; 2023 Oct; 62(43):e202311896. PubMed ID: 37671593
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Artificial metalloenzymes for enantioselective catalysis based on biotin-avidin.
    Collot J; Gradinaru J; Humbert N; Skander M; Zocchi A; Ward TR
    J Am Chem Soc; 2003 Jul; 125(30):9030-1. PubMed ID: 15369356
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Beyond the Second Coordination Sphere: Engineering Dirhodium Artificial Metalloenzymes To Enable Protein Control of Transition Metal Catalysis.
    Lewis JC
    Acc Chem Res; 2019 Mar; 52(3):576-584. PubMed ID: 30830755
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spiers Memorial Lecture: Shielding the active site: a streptavidin superoxide-dismutase chimera as a host protein for asymmetric transfer hydrogenation.
    Igareta NV; Tachibana R; Spiess DC; Peterson RL; Ward TR
    Faraday Discuss; 2023 Aug; 244(0):9-20. PubMed ID: 36924204
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Directed Evolution of Artificial Metalloenzymes: Genetic Optimization of the Catalytic Activity.
    Hestericová M
    Chimia (Aarau); 2018 Apr; 72(4):189-192. PubMed ID: 29720306
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ferritin encapsulation of artificial metalloenzymes: engineering a tertiary coordination sphere for an artificial transfer hydrogenase.
    Hestericová M; Heinisch T; Lenz M; Ward TR
    Dalton Trans; 2018 Aug; 47(32):10837-10841. PubMed ID: 30019062
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Artificial metalloenzymes based on biotin-avidin technology for the enantioselective reduction of ketones by transfer hydrogenation.
    Letondor C; Humbert N; Ward TR
    Proc Natl Acad Sci U S A; 2005 Mar; 102(13):4683-7. PubMed ID: 15772162
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Designing Artificial Metalloenzymes by Tuning of the Environment beyond the Primary Coordination Sphere.
    Van Stappen C; Deng Y; Liu Y; Heidari H; Wang JX; Zhou Y; Ledray AP; Lu Y
    Chem Rev; 2022 Jul; 122(14):11974-12045. PubMed ID: 35816578
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Repurposing metalloproteins as mimics of natural metalloenzymes for small-molecule activation.
    DiPrimio DJ; Holland PL
    J Inorg Biochem; 2021 Jun; 219():111430. PubMed ID: 33873051
    [TBL] [Abstract][Full Text] [Related]  

  • 15. LmrR: A Privileged Scaffold for Artificial Metalloenzymes.
    Roelfes G
    Acc Chem Res; 2019 Mar; 52(3):545-556. PubMed ID: 30794372
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Artificial Metalloenzymes: Reaction Scope and Optimization Strategies.
    Schwizer F; Okamoto Y; Heinisch T; Gu Y; Pellizzoni MM; Lebrun V; Reuter R; Köhler V; Lewis JC; Ward TR
    Chem Rev; 2018 Jan; 118(1):142-231. PubMed ID: 28714313
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Controlled Ligand Exchange Between Ruthenium Organometallic Cofactor Precursors and a Naïve Protein Scaffold Generates Artificial Metalloenzymes Catalysing Transfer Hydrogenation.
    Biggs GS; Klein OJ; Maslen SL; Skehel JM; Rutherford TJ; Freund SMV; Hollfelder F; Boss SR; Barker PD
    Angew Chem Int Ed Engl; 2021 May; 60(19):10919-10927. PubMed ID: 33616271
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Artificial metalloenzymes: (strept)avidin as host for enantioselective hydrogenation by achiral biotinylated rhodium-diphosphine complexes.
    Skander M; Humbert N; Collot J; Gradinaru J; Klein G; Loosli A; Sauser J; Zocchi A; Gilardoni F; Ward TR
    J Am Chem Soc; 2004 Nov; 126(44):14411-8. PubMed ID: 15521760
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular Modeling for Artificial Metalloenzyme Design and Optimization.
    Alonso-Cotchico L; Rodrı Guez-Guerra J; Lledós A; Maréchal JD
    Acc Chem Res; 2020 Apr; 53(4):896-905. PubMed ID: 32233391
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Artificial transfer hydrogenases based on the biotin-(strept)avidin technology: fine tuning the selectivity by saturation mutagenesis of the host protein.
    Letondor C; Pordea A; Humbert N; Ivanova A; Mazurek S; Novic M; Ward TR
    J Am Chem Soc; 2006 Jun; 128(25):8320-8. PubMed ID: 16787096
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.