These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 34879541)

  • 21. Adsorption Features of Formaldehyde on TiO
    Wang H; Zhao X; Huang C; Jin X; Wei D; Dai D; Ma Z; Li WX; Yang X
    J Phys Chem Lett; 2019 Jun; 10(12):3352-3358. PubMed ID: 31181938
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Dark-Light Tandem Catalytic Oxidation of Formaldehyde over SrBi
    Ma W; Liu Q; Lin Y; Li Y
    Molecules; 2023 Jul; 28(15):. PubMed ID: 37570662
    [TBL] [Abstract][Full Text] [Related]  

  • 23. High-efficient mineralization of formaldehyde by three-dimensional "PIZZA"-like bismuth molybdate-titania/diatomite composite.
    Yuan F; Li C; Yang R; Tan Y; Ma R; Zhang X; Zheng S; Sun Z
    J Colloid Interface Sci; 2022 Oct; 624():713-724. PubMed ID: 35696789
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Light-Induced Generation and Regeneration of Oxygen Vacancies in BiSbO
    Ran M; Wang H; Cui W; Li J; Chen P; Sun Y; Sheng J; Zhou Y; Zhang Y; Dong F
    ACS Appl Mater Interfaces; 2019 Dec; 11(51):47984-47991. PubMed ID: 31802653
    [TBL] [Abstract][Full Text] [Related]  

  • 25. TiO2 hydrosols with high activity for photocatalytic degradation of formaldehyde in a gaseous phase.
    Liu TX; Li FB; Li XZ
    J Hazard Mater; 2008 Mar; 152(1):347-55. PubMed ID: 17706352
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Insights into the roles of superficial lattice oxygen in formaldehyde oxidation on birnessite.
    Ma Z; Li Y; Sun K; Ahmed J; Tian W; Xu J
    Nanoscale; 2024 Jul; 16(26):12541-12549. PubMed ID: 38884124
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Formation of hydroxyl radicals and kinetic study of 2-chlorophenol photocatalytic oxidation using C-doped TiO2, N-doped TiO2, and C,N Co-doped TiO2 under visible light.
    Ananpattarachai J; Seraphin S; Kajitvichyanukul P
    Environ Sci Pollut Res Int; 2016 Feb; 23(4):3884-96. PubMed ID: 26499197
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Photocatalytic reduction of CO
    Zhou Y; Zhang Q; Shi X; Song Q; Zhou C; Jiang D
    J Colloid Interface Sci; 2022 Feb; 608(Pt 3):2809-2819. PubMed ID: 34785050
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Synergistic effects of multitype carbon doping and oxygen vacancies in TiO
    Tan Y; Xu H; Shu R; Liu Z; Song L; Zhang R; Ouyang C; Xia M; Hou J; Zhang X; Yuan Y; Renxi Z
    Chemosphere; 2023 Oct; 337():139406. PubMed ID: 37406940
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Crystal-structure dependent reaction pathways in photocatalytic formaldehyde mineralization on BiPO
    He Y; Li J; Sheng J; Chen S; Dong F; Sun Y
    J Hazard Mater; 2021 Oct; 420():126633. PubMed ID: 34280717
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Direct Photocatalytic Methane Oxidation to Formaldehyde by N Doping Co-Decorated Mixed Crystal TiO
    Zhang R; Shi J; Fu L; Liu YG; Jia Y; Han Z; Yuan K; Jiang HY
    ACS Nano; 2024 May; 18(20):12994-13005. PubMed ID: 38721844
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mesoporous Ga-TiO₂: Role of Oxygen Vacancies for the Photocatalytic Degradation Under Visible Light.
    Myilsamy M; Mahalakshmi M; Subha N; Murugesan V
    J Nanosci Nanotechnol; 2018 Feb; 18(2):925-935. PubMed ID: 29448516
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Enhanced Formaldehyde Oxidation Performance of the Mesoporous TiO
    Wei T; Zhao X; Li L; Wang L; Lv S; Gao L; Yuan G; Li L
    ACS Omega; 2022 Jul; 7(29):25491-25501. PubMed ID: 35910119
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Significantly enhanced visible light photocatalytic efficiency of phosphorus doped TiO
    Feng X; Wang P; Hou J; Qian J; Ao Y; Wang C
    J Hazard Mater; 2018 Jun; 351():196-205. PubMed ID: 29550553
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Catalytic performance and mechanism of bismuth molybdate nanosheets decorated with platinum nanoparticles for formaldehyde decomposition at room temperature.
    Qin L; Huang S; Cheng H
    J Colloid Interface Sci; 2023 Mar; 633():453-467. PubMed ID: 36462268
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Solid-state, planar photoelectrocatalytic devices using a nanosized TiO2 layer.
    Shang J; Xie S; Zhu T; Li J
    Environ Sci Technol; 2007 Nov; 41(22):7876-80. PubMed ID: 18075102
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Understanding A-site tuning effect on formaldehyde catalytic oxidation over La-Mn perovskite catalysts.
    Ding J; Liu J; Yang Y; Zhao L; Yu Y
    J Hazard Mater; 2022 Jan; 422():126931. PubMed ID: 34425429
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Highly efficient simultaneous removal of HCHO and elemental mercury over Mn-Co oxides promoted Zr-AC samples.
    Du X; Li C; Zhang J; Zhao L; Li S; Lyu Y; Zhang Y; Zhu Y; Huang L
    J Hazard Mater; 2021 Apr; 408():124830. PubMed ID: 33387718
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effect of redox state of Ag on indoor formaldehyde degradation over Ag/TiO
    Fang R; He M; Huang H; Feng Q; Ji J; Zhan Y; Leung DYC; Zhao W
    Chemosphere; 2018 Dec; 213():235-243. PubMed ID: 30223128
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Assessment of multiple environmental factors on the adsorptive and photocatalytic removal of gaseous formaldehyde by a nano-TiO
    Lin Z; Shen W; Corriou JP; Chen X; Xi H
    J Colloid Interface Sci; 2022 Feb; 608(Pt 2):1769-1781. PubMed ID: 34749140
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.