These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 34879682)

  • 1. Role of metal-nanostructure features on tip-enhanced photoluminescence of single molecules.
    Romanelli M; Dall'Osto G; Corni S
    J Chem Phys; 2021 Dec; 155(21):214304. PubMed ID: 34879682
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Single-Molecule Time-Resolved Spectroscopy in a Tunable STM Nanocavity.
    Doležal J; Sagwal A; de Campos Ferreira RC; Švec M
    Nano Lett; 2024 Feb; 24(5):1629-1634. PubMed ID: 38286028
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Numerical investigations on the electromagnetic enhancement effect to tip-enhanced Raman scattering and fluorescence processes.
    Wei Y; Pei H; Sun D; Duan S; Tian G
    J Phys Condens Matter; 2019 Jun; 31(23):235301. PubMed ID: 30818299
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of an atomistic protrusion at the tip apex on enhancing molecular emission in tunnel junctions: A theoretical study.
    Zhu JZ; Chen G; Ijaz T; Li XG; Dong ZC
    J Chem Phys; 2021 Jun; 154(21):214706. PubMed ID: 34240995
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tip-Induced Strain Engineering of a Single Metal Halide Perovskite Quantum Dot.
    Lee H; Woo JY; Park DY; Jo I; Park J; Lee Y; Koo Y; Choi J; Kim H; Kim YH; Jeong MS; Jeong S; Park KD
    ACS Nano; 2021 May; 15(5):9057-9064. PubMed ID: 33988975
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Remote Excitation of Tip-Enhanced Photoluminescence with a Parallel AgNW Coupler.
    Peeters W; Toyouchi S; Fujita Y; Wolf M; Fortuni B; Fron E; Inose T; Hofkens J; Endo T; Miyata Y; Uji-I H
    ACS Omega; 2023 Oct; 8(41):38386-38393. PubMed ID: 37867716
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Plasmon-Mediated Drilling in Thin Metallic Nanostructures.
    McRae DM; Jeon K; Lagugné-Labarthet F
    ACS Omega; 2018 Jul; 3(7):7269-7277. PubMed ID: 31458887
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of nonlocal dielectric response on the Au tip-enhanced fluorescence effect.
    Pei H; Wei Y; Dai Q
    J Phys Condens Matter; 2021 Feb; 33(7):075003. PubMed ID: 33152718
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adaptive tip-enhanced nano-spectroscopy.
    Lee DY; Park C; Choi J; Koo Y; Kang M; Jeong MS; Raschke MB; Park KD
    Nat Commun; 2021 Jun; 12(1):3465. PubMed ID: 34103520
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tunable plasmon resonances in a metallic nanotip-film system.
    Uetsuki K; Verma P; Nordlander P; Kawata S
    Nanoscale; 2012 Sep; 4(19):5931-5. PubMed ID: 22899297
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chemical mapping of a single molecule by plasmon-enhanced Raman scattering.
    Zhang R; Zhang Y; Dong ZC; Jiang S; Zhang C; Chen LG; Zhang L; Liao Y; Aizpurua J; Luo Y; Yang JL; Hou JG
    Nature; 2013 Jun; 498(7452):82-6. PubMed ID: 23739426
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine.
    Jain PK; Huang X; El-Sayed IH; El-Sayed MA
    Acc Chem Res; 2008 Dec; 41(12):1578-86. PubMed ID: 18447366
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanoscale mapping of excitonic processes in single-layer MoS2 using tip-enhanced photoluminescence microscopy.
    Su W; Kumar N; Mignuzzi S; Crain J; Roy D
    Nanoscale; 2016 May; 8(20):10564-9. PubMed ID: 27152366
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Platinum plasmonic nanostructure arrays for massively parallel single-molecule detection based on enhanced fluorescence measurements.
    Saito T; Takahashi S; Obara T; Itabashi N; Imai K
    Nanotechnology; 2011 Nov; 22(44):445708. PubMed ID: 21988776
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Manipulating Light-Matter Interactions in Plasmonic Nanoparticle Lattices.
    Wang D; Guan J; Hu J; Bourgeois MR; Odom TW
    Acc Chem Res; 2019 Nov; 52(11):2997-3007. PubMed ID: 31596570
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Understanding photoluminescence of metal nanostructures based on an oscillator model.
    Cheng Y; Zhang W; Zhao J; Wen T; Hu A; Gong Q; Lu G
    Nanotechnology; 2018 Aug; 29(31):315201. PubMed ID: 29757167
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Broadband Raman scattering enhancement with reduced heat generation in a dielectric-metal hybrid nanocavity.
    Liu S; Li J; Wang H; Tao Q; Zhong L; Lu X
    Opt Express; 2021 Jun; 29(13):20092-20104. PubMed ID: 34266106
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Energy transfer and depolarization in the photoluminescence of a plasmonic molecule.
    Yin T; Jiang L; Dong Z; Yang JK; Shen ZX
    Nanoscale; 2017 Feb; 9(5):2082-2087. PubMed ID: 28116398
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultrasensitive Three-Dimensional Orientation Imaging of Single Molecules on Plasmonic Nanohole Arrays Using Second Harmonic Generation.
    Sahu SP; Mahigir A; Chidester B; Veronis G; Gartia MR
    Nano Lett; 2019 Sep; 19(9):6192-6202. PubMed ID: 31387355
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tip-Induced Nano-Engineering of Strain, Bandgap, and Exciton Funneling in 2D Semiconductors.
    Koo Y; Kim Y; Choi SH; Lee H; Choi J; Lee DY; Kang M; Lee HS; Kim KK; Lee G; Park KD
    Adv Mater; 2021 Apr; 33(17):e2008234. PubMed ID: 33709476
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.