BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 34879815)

  • 1. Optimal dimensionality selection for independent component analysis of transcriptomic data.
    McConn JL; Lamoureux CR; Poudel S; Palsson BO; Sastry AV
    BMC Bioinformatics; 2021 Dec; 22(1):584. PubMed ID: 34879815
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exploring combinations of dimensionality reduction, transfer learning, and regularization methods for predicting binary phenotypes with transcriptomic data.
    Oshternian SR; Loipfinger S; Bhattacharya A; Fehrmann RSN
    BMC Bioinformatics; 2024 Apr; 25(1):167. PubMed ID: 38671342
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Escherichia coli transcriptome mostly consists of independently regulated modules.
    Sastry AV; Gao Y; Szubin R; Hefner Y; Xu S; Kim D; Choudhary KS; Yang L; King ZA; Palsson BO
    Nat Commun; 2019 Dec; 10(1):5536. PubMed ID: 31797920
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Determining the optimal number of independent components for reproducible transcriptomic data analysis.
    Kairov U; Cantini L; Greco A; Molkenov A; Czerwinska U; Barillot E; Zinovyev A
    BMC Genomics; 2017 Sep; 18(1):712. PubMed ID: 28893186
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Compressing gene expression data using multiple latent space dimensionalities learns complementary biological representations.
    Way GP; Zietz M; Rubinetti V; Himmelstein DS; Greene CS
    Genome Biol; 2020 May; 21(1):109. PubMed ID: 32393369
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inferring and analyzing gene regulatory networks from multi-factorial expression data: a complete and interactive suite.
    Cassan O; Lèbre S; Martin A
    BMC Genomics; 2021 May; 22(1):387. PubMed ID: 34039282
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Data-driven human transcriptomic modules determined by independent component analysis.
    Zhou W; Altman RB
    BMC Bioinformatics; 2018 Sep; 19(1):327. PubMed ID: 30223787
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Meta-analysis of cell- specific transcriptomic data using fuzzy c-means clustering discovers versatile viral responsive genes.
    Khan A; Katanic D; Thakar J
    BMC Bioinformatics; 2017 Jun; 18(1):295. PubMed ID: 28587632
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Trimming of mammalian transcriptional networks using network component analysis.
    Tran LM; Hyduke DR; Liao JC
    BMC Bioinformatics; 2010 Oct; 11():511. PubMed ID: 20942926
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MICRAT: a novel algorithm for inferring gene regulatory networks using time series gene expression data.
    Yang B; Xu Y; Maxwell A; Koh W; Gong P; Zhang C
    BMC Syst Biol; 2018 Dec; 12(Suppl 7):115. PubMed ID: 30547796
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Algorithms for network-based identification of differential regulators from transcriptome data: a systematic evaluation.
    Yu H; Mitra R; Yang J; Li Y; Zhao Z
    Sci China Life Sci; 2014 Nov; 57(11):1090-102. PubMed ID: 25326829
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multiobjective triclustering of time-series transcriptome data reveals key genes of biological processes.
    Bhar A; Haubrock M; Mukhopadhyay A; Wingender E
    BMC Bioinformatics; 2015 Jun; 16():200. PubMed ID: 26108437
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A transcriptomic reporter assay employing neutrophils to measure immunogenic activity of septic patients' plasma.
    Khaenam P; Rinchai D; Altman MC; Chiche L; Buddhisa S; Kewcharoenwong C; Suwannasaen D; Mason M; Whalen E; Presnell S; Susaengrat W; O'Brien K; Nguyen QA; Gersuk V; Linsley PS; Lertmemongkolchai G; Chaussabel D
    J Transl Med; 2014 Mar; 12():65. PubMed ID: 24612859
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessing reproducibility of matrix factorization methods in independent transcriptomes.
    Cantini L; Kairov U; de Reyniès A; Barillot E; Radvanyi F; Zinovyev A
    Bioinformatics; 2019 Nov; 35(21):4307-4313. PubMed ID: 30938767
    [TBL] [Abstract][Full Text] [Related]  

  • 15. GSNFS: Gene subnetwork biomarker identification of lung cancer expression data.
    Doungpan N; Engchuan W; Chan JH; Meechai A
    BMC Med Genomics; 2016 Dec; 9(Suppl 3):70. PubMed ID: 28117655
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Data Convexity and Parameter Independent Clustering for Biomedical Datasets.
    Rahman MA; Ang LM; Seng KP
    IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(2):765-772. PubMed ID: 32149694
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Integrative transcriptomic, proteomic, and machine learning approach to identifying feature genes of atrial fibrillation using atrial samples from patients with valvular heart disease.
    Liu Y; Bai F; Tang Z; Liu N; Liu Q
    BMC Cardiovasc Disord; 2021 Jan; 21(1):52. PubMed ID: 33509101
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simultaneous clustering of multiple gene expression and physical interaction datasets.
    Narayanan M; Vetta A; Schadt EE; Zhu J
    PLoS Comput Biol; 2010 Apr; 6(4):e1000742. PubMed ID: 20419151
    [TBL] [Abstract][Full Text] [Related]  

  • 19. BubbleGUM: automatic extraction of phenotype molecular signatures and comprehensive visualization of multiple Gene Set Enrichment Analyses.
    Spinelli L; Carpentier S; Montañana Sanchis F; Dalod M; Vu Manh TP
    BMC Genomics; 2015 Oct; 16():814. PubMed ID: 26481321
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recursive Consensus Clustering for novel subtype discovery from transcriptome data.
    Sonpatki P; Shah N
    Sci Rep; 2020 Jul; 10(1):11005. PubMed ID: 32620805
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.