These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
133 related articles for article (PubMed ID: 34879911)
1. Integrating thermal tolerance, water balance and morphology: An experimental study on dung beetles. Nervo B; Roggero A; Isaia M; Chamberlain D; Rolando A; Palestrini C J Therm Biol; 2021 Oct; 101():103093. PubMed ID: 34879911 [TBL] [Abstract][Full Text] [Related]
2. Physiological, morphological and ecological traits drive desiccation resistance in north temperate dung beetles. Nervo B; Roggero A; Chamberlain D; Caprio E; Rolando A; Palestrini C BMC Zool; 2021 Sep; 6(1):26. PubMed ID: 37170349 [TBL] [Abstract][Full Text] [Related]
3. Aquatic insects in a multistress environment: cross-tolerance to salinity and desiccation. Pallarés S; Botella-Cruz M; Arribas P; Millán A; Velasco J J Exp Biol; 2017 Apr; 220(Pt 7):1277-1286. PubMed ID: 28104801 [TBL] [Abstract][Full Text] [Related]
4. Heat tolerance may determine activity time in coprophagic beetle species (Coleoptera: Scarabaeidae). Gotcha N; Machekano H; Cuthbert RN; Nyamukondiwa C Insect Sci; 2021 Aug; 28(4):1076-1086. PubMed ID: 32567803 [TBL] [Abstract][Full Text] [Related]
5. Limited thermal plasticity may constrain ecosystem function in a basally heat tolerant tropical telecoprid dung beetle, Allogymnopleurus thalassinus (Klug, 1855). Machekano H; Zidana C; Gotcha N; Nyamukondiwa C Sci Rep; 2021 Nov; 11(1):22192. PubMed ID: 34772933 [TBL] [Abstract][Full Text] [Related]
6. Desiccation tolerance in Anopheles coluzzii: the effects of spiracle size and cuticular hydrocarbons. Arcaz AC; Huestis DL; Dao A; Yaro AS; Diallo M; Andersen J; Blomquist GJ; Lehmann T J Exp Biol; 2016 Jun; 219(Pt 11):1675-88. PubMed ID: 27207644 [TBL] [Abstract][Full Text] [Related]
7. Spatio-temporal modelling suggests that some dung beetle species (Coleoptera: Geotrupidae) may respond to global warming by boosting dung removal. Nervo B; Laini A; Roggero A; Palestrini C; Rolando A Sci Total Environ; 2024 Jan; 908():168127. PubMed ID: 37907105 [TBL] [Abstract][Full Text] [Related]
8. Does plasticity in thermal tolerance trade off with inherent tolerance? The influence of setal tracheal gills on thermal tolerance and its plasticity in a group of European diving beetles. Verberk WCEP; Calosi P; Spicer JI; Kehl S; Bilton DT J Insect Physiol; 2018 Apr; 106(Pt 3):163-171. PubMed ID: 29278714 [TBL] [Abstract][Full Text] [Related]
9. Effect of Chemical Pollution and Parasitism on Heat Tolerance in Dung Beetles (Coleoptera: Scarabaeinae). González-Tokman D; Gil-Pérez Y; Servín-Pastor M; Alvarado F; Escobar F; Baena-Díaz F; García-Robledo C; Martínez-M I J Econ Entomol; 2021 Feb; 114(1):462-467. PubMed ID: 33079989 [TBL] [Abstract][Full Text] [Related]
10. Low heat tolerance and high desiccation resistance in nocturnal bees and the implications for nocturnal pollination under climate change. Gonzalez VH; Manweiler R; Smith AR; Oyen K; Cardona D; Wcislo WT Sci Rep; 2023 Dec; 13(1):22320. PubMed ID: 38102400 [TBL] [Abstract][Full Text] [Related]
11. Comparative thermoregulation between different species of dung beetles (Coleoptera: Geotrupinae). Gallego B; Verdú JR; Lobo JM J Therm Biol; 2018 May; 74():84-91. PubMed ID: 29801655 [TBL] [Abstract][Full Text] [Related]
12. Comparison of Water Relation in Two Powderpost Beetles Relative to Body Size and Ontogenetic and Behavioral Traits. Bong LJ; Neoh KB; Yoshimura T Environ Entomol; 2018 Aug; 47(4):990-996. PubMed ID: 29750246 [TBL] [Abstract][Full Text] [Related]
14. The effects of acclimation on thermal tolerance, desiccation resistance and metabolic rate in Chirodica chalcoptera (Coleoptera: Chrysomelidae). Terblanche JS; Sinclair BJ; Jaco Klok C; McFarlane ML; Chown SL J Insect Physiol; 2005 Sep; 51(9):1013-23. PubMed ID: 15955537 [TBL] [Abstract][Full Text] [Related]
15. Daily Activity Patterns and Thermal Tolerance of Three Sympatric Dung Beetle Species (Scarabaeidae: Scarabaeinae: Eucraniini) from the Monte Desert, Argentina. Giménez Gómez VC; Lomáscolo SB; Zurita GA; Ocampo F Neotrop Entomol; 2018 Dec; 47(6):821-827. PubMed ID: 29214545 [TBL] [Abstract][Full Text] [Related]
16. Integrating water balance mechanisms into predictions of insect responses to climate change. Sinclair BJ; Saruhashi S; Terblanche JS J Exp Biol; 2024 May; 227(10):. PubMed ID: 38779934 [TBL] [Abstract][Full Text] [Related]
17. Divergence of water balance mechanisms in two sibling species (Drosophila simulans and D. melanogaster): effects of growth temperatures. Parkash R; Aggarwal DD; Singh D; Lambhod C; Ranga P J Comp Physiol B; 2013 Apr; 183(3):359-78. PubMed ID: 23080219 [TBL] [Abstract][Full Text] [Related]
18. Eye and wing structure closely reflects the visual ecology of dung beetles. Tocco C; Dacke M; Byrne M J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2019 Apr; 205(2):211-221. PubMed ID: 30830308 [TBL] [Abstract][Full Text] [Related]
19. Evolutionary constraints in hind wing shape in Chinese dung beetles (Coleoptera: Scarabaeinae). Bai M; McCullough E; Song KQ; Liu WG; Yang XK PLoS One; 2011; 6(6):e21600. PubMed ID: 21738727 [TBL] [Abstract][Full Text] [Related]
20. Water Balance and Desiccation Tolerance of the Invasive South American Tomato Pinworm. Tarusikirwa VL; Cuthbert RN; Mutamiswa R; Gotcha N; Nyamukondiwa C J Econ Entomol; 2021 Aug; 114(4):1743-1751. PubMed ID: 34231839 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]