BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 34880311)

  • 1. Weakly Supervised Sensitive Heatmap framework to classify and localize diabetic retinopathy lesions.
    Al-Mukhtar M; Morad AH; Albadri M; Islam MDS
    Sci Rep; 2021 Dec; 11(1):23631. PubMed ID: 34880311
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MediDRNet: Tackling category imbalance in diabetic retinopathy classification with dual-branch learning and prototypical contrastive learning.
    Teng S; Wang B; Yang F; Yi X; Zhang X; Sun Y
    Comput Methods Programs Biomed; 2024 Aug; 253():108230. PubMed ID: 38810377
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An Effective Method for Detecting and Classifying Diabetic Retinopathy Lesions Based on Deep Learning.
    Erciyas A; Barışçı N
    Comput Math Methods Med; 2021; 2021():9928899. PubMed ID: 34194538
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effective Fundus Image Decomposition for the Detection of Red Lesions and Hard Exudates to Aid in the Diagnosis of Diabetic Retinopathy.
    Romero-Oraá R; García M; Oraá-Pérez J; López-Gálvez MI; Hornero R
    Sensors (Basel); 2020 Nov; 20(22):. PubMed ID: 33207825
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computer aided diagnosis of diabetic retinopathy based on multi-view joint learning.
    Xu X; Liu D; Huang G; Wang M; Lei M; Jia Y
    Comput Biol Med; 2024 May; 174():108428. PubMed ID: 38631117
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An interpretable dual attention network for diabetic retinopathy grading: IDANet.
    Bhati A; Gour N; Khanna P; Ojha A; Werghi N
    Artif Intell Med; 2024 Mar; 149():102782. PubMed ID: 38462283
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Artificial Humming Bird Optimization-Based Hybrid CNN-RNN for Accurate Exudate Classification from Fundus Images.
    E D; S SP; R P; C BS
    J Digit Imaging; 2023 Feb; 36(1):59-72. PubMed ID: 36241944
    [TBL] [Abstract][Full Text] [Related]  

  • 8. SSiT: Saliency-Guided Self-Supervised Image Transformer for Diabetic Retinopathy Grading.
    Huang Y; Lyu J; Cheng P; Tam R; Tang X
    IEEE J Biomed Health Inform; 2024 May; 28(5):2806-2817. PubMed ID: 38319784
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Diabetic retinopathy prediction based on vision transformer and modified capsule network.
    Oulhadj M; Riffi J; Khodriss C; Mahraz AM; Yahyaouy A; Abdellaoui M; Andaloussi IB; Tairi H
    Comput Biol Med; 2024 Jun; 175():108523. PubMed ID: 38701591
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A multidomain bio-inspired feature extraction and selection model for diabetic retinopathy severity classification: an ensemble learning approach.
    Uppamma P; Bhattacharya S
    Sci Rep; 2023 Oct; 13(1):18572. PubMed ID: 37903967
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multi-scale multi-attention network for diabetic retinopathy grading.
    Xia H; Long J; Song S; Tan Y
    Phys Med Biol; 2023 Dec; 69(1):. PubMed ID: 38035368
    [No Abstract]   [Full Text] [Related]  

  • 12. Identifying Diabetic Retinopathy in the Human Eye: A Hybrid Approach Based on a Computer-Aided Diagnosis System Combined with Deep Learning.
    Atcı ŞY; Güneş A; Zontul M; Arslan Z
    Tomography; 2024 Feb; 10(2):215-230. PubMed ID: 38393285
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Understanding inherent image features in CNN-based assessment of diabetic retinopathy.
    Reguant R; Brunak S; Saha S
    Sci Rep; 2021 May; 11(1):9704. PubMed ID: 33958686
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A reliable diabetic retinopathy grading via transfer learning and ensemble learning with quadratic weighted kappa metric.
    Chilukoti SV; Shan L; Tida VS; Maida AS; Hei X
    BMC Med Inform Decis Mak; 2024 Feb; 24(1):37. PubMed ID: 38321416
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deploying efficient net batch normalizations (BNs) for grading diabetic retinopathy severity levels from fundus images.
    Batool S; Gilani SO; Waris A; Iqbal KF; Khan NB; Khan MI; Eldin SM; Awwad FA
    Sci Rep; 2023 Sep; 13(1):14462. PubMed ID: 37660096
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Source-free active domain adaptation for diabetic retinopathy grading based on ultra-wide-field fundus images.
    Ran J; Zhang G; Xia F; Zhang X; Xie J; Zhang H
    Comput Biol Med; 2024 May; 174():108418. PubMed ID: 38593641
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SG-MIAN: Self-guided multiple information aggregation network for image-level weakly supervised skin lesion segmentation.
    Li Z; Zhang N; Gong H; Qiu R; Zhang W
    Comput Biol Med; 2024 Mar; 170():107988. PubMed ID: 38232452
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Diabetic retinopathy detection using Bilayered Neural Network classification model with resubstitution validation.
    Omer HK
    MethodsX; 2024 Jun; 12():102705. PubMed ID: 38633420
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fine-Grained Self-Supervised Learning with Jigsaw puzzles for medical image classification.
    Park W; Ryu J
    Comput Biol Med; 2024 May; 174():108460. PubMed ID: 38636330
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Collaborative learning of weakly-supervised domain adaptation for diabetic retinopathy grading on retinal images.
    Cao P; Hou Q; Song R; Wang H; Zaiane O
    Comput Biol Med; 2022 May; 144():105341. PubMed ID: 35279423
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.