BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 34880337)

  • 1. Transcriptome analysis of Rafflesia cantleyi flower stages reveals insights into the regulation of senescence.
    Mohd-Elias NA; Rosli K; Alias H; Juhari MA; Abu-Bakar MF; Md-Isa N; Mat-Isa MN; Haji-Adam J; Goh HH; Wan KL
    Sci Rep; 2021 Dec; 11(1):23661. PubMed ID: 34880337
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transcriptome landscape of Rafflesia cantleyi floral buds reveals insights into the roles of transcription factors and phytohormones in flower development.
    Amini S; Rosli K; Abu-Bakar MF; Alias H; Mat-Isa MN; Juhari MA; Haji-Adam J; Goh HH; Wan KL
    PLoS One; 2019; 14(12):e0226338. PubMed ID: 31851702
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Perigone Lobe Transcriptome Analysis Provides Insights into Rafflesia cantleyi Flower Development.
    Lee XW; Mat-Isa MN; Mohd-Elias NA; Aizat-Juhari MA; Goh HH; Dear PH; Chow KS; Haji Adam J; Mohamed R; Firdaus-Raih M; Wan KL
    PLoS One; 2016; 11(12):e0167958. PubMed ID: 27977777
    [TBL] [Abstract][Full Text] [Related]  

  • 4. De novo transcriptome analysis of petal senescence in Gardenia jasminoides Ellis.
    Tsanakas GF; Manioudaki ME; Economou AS; Kalaitzis P
    BMC Genomics; 2014 Jul; 15(1):554. PubMed ID: 24993183
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pollinator specialization in the enigmatic Rafflesia cantleyi: A true carrion flower with species-specific and sex-biased blow fly pollinators.
    Wee SL; Tan SB; Jürgens A
    Phytochemistry; 2018 Sep; 153():120-128. PubMed ID: 29906658
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transcriptomic analysis of flower development in wintersweet (Chimonanthus praecox).
    Liu D; Sui S; Ma J; Li Z; Guo Y; Luo D; Yang J; Li M
    PLoS One; 2014; 9(1):e86976. PubMed ID: 24489818
    [TBL] [Abstract][Full Text] [Related]  

  • 7. De novo sequencing and comparative transcriptome analysis of the male and hermaphroditic flowers provide insights into the regulation of flower formation in andromonoecious taihangia rupestris.
    Li W; Zhang L; Ding Z; Wang G; Zhang Y; Gong H; Chang T; Zhang Y
    BMC Plant Biol; 2017 Feb; 17(1):54. PubMed ID: 28241786
    [TBL] [Abstract][Full Text] [Related]  

  • 8. RNA-seq data from different developmental stages of
    Amini S; Alias H; Aizat-Juhari MA; Mat-Isa MN; Adam JH; Goh HH; Wan KL
    Genom Data; 2017 Dec; 14():5-6. PubMed ID: 28761813
    [No Abstract]   [Full Text] [Related]  

  • 9. Identification and characterization of RcMADS1, an AGL24 ortholog from the holoparasitic plant Rafflesia cantleyi Solms-Laubach (Rafflesiaceae).
    Ramamoorthy R; Phua EE; Lim SH; Tan HT; Kumar PP
    PLoS One; 2013; 8(6):e67243. PubMed ID: 23840638
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transcriptome Analysis of Flower Sex Differentiation in Jatropha curcas L. Using RNA Sequencing.
    Xu G; Huang J; Yang Y; Yao YA
    PLoS One; 2016; 11(2):e0145613. PubMed ID: 26848843
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Whole-Transcriptome Analysis of Differentially Expressed Genes in the Vegetative Buds, Floral Buds and Buds of Chrysanthemum morifolium.
    Liu H; Sun M; Du D; Pan H; Cheng T; Wang J; Zhang Q
    PLoS One; 2015; 10(5):e0128009. PubMed ID: 26009891
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative Transcriptome Analysis between Fertile and CMS Flower Buds in Wucai (Brassica campestris L.).
    Chen G; Ye X; Zhang S; Zhu S; Yuan L; Hou J; Wang C
    BMC Genomics; 2018 Dec; 19(1):908. PubMed ID: 30541424
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative Transcriptome Analysis of Flower Senescence of
    Liu W; Yin H; Feng Y; Yu S; Fan Z; Li X; Li J
    Curr Genomics; 2022 Apr; 23(1):66-76. PubMed ID: 35814935
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bud development, flower phenology and life history of holoparasitic Rafflesia cantleyi.
    Wee SL; Tan SB; Tan SH; Lee BKB
    J Plant Res; 2024 May; 137(3):423-443. PubMed ID: 38353931
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transcriptome Analysis of
    He W; Chen Y; Gao M; Zhao Y; Xu Z; Cao P; Zhang Q; Jiao Y; Li H; Wu L; Wang Y
    G3 (Bethesda); 2018 Mar; 8(4):1103-1114. PubMed ID: 29487185
    [TBL] [Abstract][Full Text] [Related]  

  • 16. De novo transcriptome assembly from flower buds of dioecious, gynomonoecious and chemically masculinized female Coccinia grandis reveals genes associated with sex expression and modification.
    Devani RS; Sinha S; Banerjee J; Sinha RK; Bendahmane A; Banerjee AK
    BMC Plant Biol; 2017 Dec; 17(1):241. PubMed ID: 29233089
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transcriptome profiling of Gerbera hybrida reveals that stem bending is caused by water stress and regulation of abscisic acid.
    Ge Y; Lai Q; Luo P; Liu X; Chen W
    BMC Genomics; 2019 Jul; 20(1):600. PubMed ID: 31331262
    [TBL] [Abstract][Full Text] [Related]  

  • 18. RNA-sequencing reveals early, dynamic transcriptome changes in the corollas of pollinated petunias.
    Broderick SR; Wijeratne S; Wijeratn AJ; Chapin LJ; Meulia T; Jones ML
    BMC Plant Biol; 2014 Nov; 14():307. PubMed ID: 25403317
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genome and transcriptome-based characterization of high energy carbon-ion beam irradiation induced delayed flower senescence mutant in Lotus japonicus.
    Du Y; Luo S; Zhao J; Feng Z; Chen X; Ren W; Liu X; Wang Z; Yu L; Li W; Qu Y; Liu J; Zhou L
    BMC Plant Biol; 2021 Nov; 21(1):510. PubMed ID: 34732128
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Signalling cascades choreographing petal cell death: implications for postharvest quality.
    Farooq S; Lone ML; Ul Haq A; Parveen S; Altaf F; Tahir I
    Plant Mol Biol; 2024 May; 114(3):63. PubMed ID: 38805152
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.