BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

398 related articles for article (PubMed ID: 34880424)

  • 1. Computational analysis of cancer genome sequencing data.
    Cortés-Ciriano I; Gulhan DC; Lee JJ; Melloni GEM; Park PJ
    Nat Rev Genet; 2022 May; 23(5):298-314. PubMed ID: 34880424
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bioinformatic Methods to Identify Mutational Signatures in Cancer.
    Islam SMA; Alexandrov LB
    Methods Mol Biol; 2021; 2185():447-473. PubMed ID: 33165866
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computational methods for DNA copy-number analysis of tumors.
    Kendall J; Krasnitz A
    Methods Mol Biol; 2014; 1176():243-59. PubMed ID: 25030933
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A survey of tools for variant analysis of next-generation genome sequencing data.
    Pabinger S; Dander A; Fischer M; Snajder R; Sperk M; Efremova M; Krabichler B; Speicher MR; Zschocke J; Trajanoski Z
    Brief Bioinform; 2014 Mar; 15(2):256-78. PubMed ID: 23341494
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computational analysis in cancer exome sequencing.
    Evans P; Kong Y; Krauthammer M
    Methods Mol Biol; 2014; 1176():219-27. PubMed ID: 25030931
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computational methods for detecting copy number variations in cancer genome using next generation sequencing: principles and challenges.
    Liu B; Morrison CD; Johnson CS; Trump DL; Qin M; Conroy JC; Wang J; Liu S
    Oncotarget; 2013 Nov; 4(11):1868-81. PubMed ID: 24240121
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A computational approach to distinguish somatic vs. germline origin of genomic alterations from deep sequencing of cancer specimens without a matched normal.
    Sun JX; He Y; Sanford E; Montesion M; Frampton GM; Vignot S; Soria JC; Ross JS; Miller VA; Stephens PJ; Lipson D; Yelensky R
    PLoS Comput Biol; 2018 Feb; 14(2):e1005965. PubMed ID: 29415044
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative analysis of methods for identifying somatic copy number alterations from deep sequencing data.
    Alkodsi A; Louhimo R; Hautaniemi S
    Brief Bioinform; 2015 Mar; 16(2):242-54. PubMed ID: 24599115
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Understanding genomic alterations in cancer genomes using an integrative network approach.
    Wang E
    Cancer Lett; 2013 Nov; 340(2):261-9. PubMed ID: 23266571
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of Copy Number Alterations from Next-Generation Sequencing Data.
    Nabavi S; Zare F
    Adv Exp Med Biol; 2022; 1361():55-74. PubMed ID: 35230683
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Emerging patterns of somatic mutations in cancer.
    Watson IR; Takahashi K; Futreal PA; Chin L
    Nat Rev Genet; 2013 Oct; 14(10):703-18. PubMed ID: 24022702
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deconvolving tumor purity and ploidy by integrating copy number alterations and loss of heterozygosity.
    Li Y; Xie X
    Bioinformatics; 2014 Aug; 30(15):2121-9. PubMed ID: 24695406
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of mutations in zebrafish using next-generation sequencing.
    Henke K; Bowen ME; Harris MP
    Curr Protoc Mol Biol; 2013 Oct; 104():7.13.1-7.13.33. PubMed ID: 24510885
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational methods and resources for the interpretation of genomic variants in cancer.
    Tian R; Basu MK; Capriotti E
    BMC Genomics; 2015; 16 Suppl 8(Suppl 8):S7. PubMed ID: 26111056
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mutational signatures: the patterns of somatic mutations hidden in cancer genomes.
    Alexandrov LB; Stratton MR
    Curr Opin Genet Dev; 2014 Feb; 24(100):52-60. PubMed ID: 24657537
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genomic sequencing in cancer.
    Tuna M; Amos CI
    Cancer Lett; 2013 Nov; 340(2):161-70. PubMed ID: 23178448
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Advances in computational approaches for prioritizing driver mutations and significantly mutated genes in cancer genomes.
    Cheng F; Zhao J; Zhao Z
    Brief Bioinform; 2016 Jul; 17(4):642-56. PubMed ID: 26307061
    [TBL] [Abstract][Full Text] [Related]  

  • 18. TumorNext: A comprehensive tumor profiling assay that incorporates high resolution copy number analysis and germline status to improve testing accuracy.
    Gray PN; Vuong H; Tsai P; Lu HM; Mu W; Hsuan V; Hoo J; Shah S; Uyeda L; Fox S; Patel H; Janicek M; Brown S; Dobrea L; Wagman L; Plimack E; Mehra R; Golemis EA; Bilusic M; Zibelman M; Elliott A
    Oncotarget; 2016 Oct; 7(42):68206-68228. PubMed ID: 27626691
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CLImAT-HET: detecting subclonal copy number alterations and loss of heterozygosity in heterogeneous tumor samples from whole-genome sequencing data.
    Yu Z; Li A; Wang M
    BMC Med Genomics; 2017 Mar; 10(1):15. PubMed ID: 28298214
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MixClone: a mixture model for inferring tumor subclonal populations.
    Li Y; Xie X
    BMC Genomics; 2015; 16 Suppl 2(Suppl 2):S1. PubMed ID: 25707430
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.