These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 34880997)

  • 1. DeepReac+: deep active learning for quantitative modeling of organic chemical reactions.
    Gong Y; Xue D; Chuai G; Yu J; Liu Q
    Chem Sci; 2021 Nov; 12(43):14459-14472. PubMed ID: 34880997
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genome-scale enzymatic reaction prediction by variational graph autoencoders.
    Wang C; Yuan C; Wang Y; Chen R; Shi Y; Patti GJ; Hou Q
    bioRxiv; 2023 Mar; ():. PubMed ID: 36945484
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A deep learning framework for accurate reaction prediction and its application on high-throughput experimentation data.
    Li B; Su S; Zhu C; Lin J; Hu X; Su L; Yu Z; Liao K; Chen H
    J Cheminform; 2023 Aug; 15(1):72. PubMed ID: 37568183
    [TBL] [Abstract][Full Text] [Related]  

  • 4. EquiPNAS: improved protein-nucleic acid binding site prediction using protein-language-model-informed equivariant deep graph neural networks.
    Roche R; Moussad B; Shuvo MH; Tarafder S; Bhattacharya D
    bioRxiv; 2023 Sep; ():. PubMed ID: 37745556
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DGL-LifeSci: An Open-Source Toolkit for Deep Learning on Graphs in Life Science.
    Li M; Zhou J; Hu J; Fan W; Zhang Y; Gu Y; Karypis G
    ACS Omega; 2021 Oct; 6(41):27233-27238. PubMed ID: 34693143
    [TBL] [Abstract][Full Text] [Related]  

  • 6. UniDL4BioPep: a universal deep learning architecture for binary classification in peptide bioactivity.
    Du Z; Ding X; Xu Y; Li Y
    Brief Bioinform; 2023 May; 24(3):. PubMed ID: 37020337
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CMMS-GCL: cross-modality metabolic stability prediction with graph contrastive learning.
    Du BX; Long Y; Li X; Wu M; Shi JY
    Bioinformatics; 2023 Aug; 39(8):. PubMed ID: 37572298
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ChampKit: A framework for rapid evaluation of deep neural networks for patch-based histopathology classification.
    Kaczmarzyk JR; Gupta R; Kurc TM; Abousamra S; Saltz JH; Koo PK
    Comput Methods Programs Biomed; 2023 Sep; 239():107631. PubMed ID: 37271050
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pre-training graph neural networks for link prediction in biomedical networks.
    Long Y; Wu M; Liu Y; Fang Y; Kwoh CK; Chen J; Luo J; Li X
    Bioinformatics; 2022 Apr; 38(8):2254-2262. PubMed ID: 35171981
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exploration of chemical space with partial labeled noisy student self-training and self-supervised graph embedding.
    Liu Y; Lim H; Xie L
    BMC Bioinformatics; 2022 May; 23(Suppl 3):158. PubMed ID: 35501680
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecule Edit Graph Attention Network: Modeling Chemical Reactions as Sequences of Graph Edits.
    Sacha M; Błaż M; Byrski P; Dąbrowski-Tumański P; Chromiński M; Loska R; Włodarczyk-Pruszyński P; Jastrzębski S
    J Chem Inf Model; 2021 Jul; 61(7):3273-3284. PubMed ID: 34251814
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An efficient curriculum learning-based strategy for molecular graph learning.
    Gu Y; Zheng S; Xu Z; Yin Q; Li L; Li J
    Brief Bioinform; 2022 May; 23(3):. PubMed ID: 35368074
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Importance of Engineered and Learned Molecular Representations in Predicting Organic Reactivity, Selectivity, and Chemical Properties.
    Gallegos LC; Luchini G; St John PC; Kim S; Paton RS
    Acc Chem Res; 2021 Feb; 54(4):827-836. PubMed ID: 33534534
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Network-principled deep generative models for designing drug combinations as graph sets.
    Karimi M; Hasanzadeh A; Shen Y
    Bioinformatics; 2020 Jul; 36(Suppl_1):i445-i454. PubMed ID: 32657357
    [TBL] [Abstract][Full Text] [Related]  

  • 16. XGraphBoost: Extracting Graph Neural Network-Based Features for a Better Prediction of Molecular Properties.
    Deng D; Chen X; Zhang R; Lei Z; Wang X; Zhou F
    J Chem Inf Model; 2021 Jun; 61(6):2697-2705. PubMed ID: 34009965
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Research progress and application of retention time prediction method based on deep learning].
    DU Z; Shao W; Qin W
    Se Pu; 2021 Mar; 39(3):211-218. PubMed ID: 34227303
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular Machine Learning for Chemical Catalysis: Prospects and Challenges.
    Singh S; Sunoj RB
    Acc Chem Res; 2023 Feb; 56(3):402-412. PubMed ID: 36715248
    [TBL] [Abstract][Full Text] [Related]  

  • 19. AI for predicting chemical-effect associations at the chemical universe level-deepFPlearn.
    Schor J; Scheibe P; Bernt M; Busch W; Lai C; Hackermüller J
    Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 35849097
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comprehensive evaluation of deep and graph learning on drug-drug interactions prediction.
    Lin X; Dai L; Zhou Y; Yu ZG; Zhang W; Shi JY; Cao DS; Zeng L; Chen H; Song B; Yu PS; Zeng X
    Brief Bioinform; 2023 Jul; 24(4):. PubMed ID: 37401373
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.