BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 34881568)

  • 21. Rational design of ion force fields based on thermodynamic solvation properties.
    Horinek D; Mamatkulov SI; Netz RR
    J Chem Phys; 2009 Mar; 130(12):124507. PubMed ID: 19334851
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Solvation free energies of amino acid side chain analogs for common molecular mechanics water models.
    Shirts MR; Pande VS
    J Chem Phys; 2005 Apr; 122(13):134508. PubMed ID: 15847482
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Clusters of classical water models.
    Kiss PT; Baranyai A
    J Chem Phys; 2009 Nov; 131(20):204310. PubMed ID: 19947683
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The melting temperature of the most common models of water.
    Vega C; Sanz E; Abascal JL
    J Chem Phys; 2005 Mar; 122(11):114507. PubMed ID: 15836229
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Force field development for actinyl ions via quantum mechanical calculations: an approach to account for many body solvation effects.
    Rai N; Tiwari SP; Maginn EJ
    J Phys Chem B; 2012 Sep; 116(35):10885-97. PubMed ID: 22857380
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Surface tension of the most popular models of water by using the test-area simulation method.
    Vega C; de Miguel E
    J Chem Phys; 2007 Apr; 126(15):154707. PubMed ID: 17461659
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Hydration thermodynamic properties of amino acid analogues: a systematic comparison of biomolecular force fields and water models.
    Hess B; van der Vegt NF
    J Phys Chem B; 2006 Sep; 110(35):17616-26. PubMed ID: 16942107
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Optimizing Protein-Solvent Force Fields to Reproduce Intrinsic Conformational Preferences of Model Peptides.
    Nerenberg PS; Head-Gordon T
    J Chem Theory Comput; 2011 Apr; 7(4):1220-30. PubMed ID: 26606367
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Building Force Fields: An Automatic, Systematic, and Reproducible Approach.
    Wang LP; Martinez TJ; Pande VS
    J Phys Chem Lett; 2014 Jun; 5(11):1885-91. PubMed ID: 26273869
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Computation of methodology-independent single-ion solvation properties from molecular simulations. IV. Optimized Lennard-Jones interaction parameter sets for the alkali and halide ions in water.
    Reif MM; Hünenberger PH
    J Chem Phys; 2011 Apr; 134(14):144104. PubMed ID: 21495739
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Systematic Parameterization of Monovalent Ions Employing the Nonbonded Model.
    Li P; Song LF; Merz KM
    J Chem Theory Comput; 2015 Apr; 11(4):1645-57. PubMed ID: 26574374
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Extended magnesium and calcium force field parameters for accurate ion-nucleic acid interactions in biomolecular simulations.
    Cruz-León S; Grotz KK; Schwierz N
    J Chem Phys; 2021 May; 154(17):171102. PubMed ID: 34241062
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Incorporating Phase-Dependent Polarizability in Non-Additive Electrostatic Models for Molecular Dynamics Simulations of the Aqueous Liquid-Vapor Interface.
    Bauer BA; Warren GL; Patel S
    J Chem Theory Comput; 2009 Feb; 5(2):359-373. PubMed ID: 23133341
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Coarse-Graining of TIP4P/2005, TIP4P-Ew, SPC/E, and TIP3P to Monatomic Anisotropic Water Models Using Relative Entropy Minimization.
    Lu J; Qiu Y; Baron R; Molinero V
    J Chem Theory Comput; 2014 Sep; 10(9):4104-20. PubMed ID: 26588552
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Evaluating the performance of the ff99SB force field based on NMR scalar coupling data.
    Wickstrom L; Okur A; Simmerling C
    Biophys J; 2009 Aug; 97(3):853-6. PubMed ID: 19651043
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Development of new Cd2+ and Pb2+ Lennard-Jones parameters for liquid simulations.
    de Araujo AS; Sonoda MT; Piro OE; Castellano EE
    J Phys Chem B; 2007 Mar; 111(9):2219-24. PubMed ID: 17291025
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Assessment of an Electrostatic Energy-Based Charge Model for Modeling the Electrostatic Interactions in Water Solvent.
    Wang X; Wang Y; Guo M; Wang X; Li Y; Zhang JZH
    J Chem Theory Comput; 2023 Sep; 19(18):6294-6312. PubMed ID: 37656610
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Examining the Role of Different Molecular Interactions on Activation Energies and Activation Volumes in Liquid Water.
    Piskulich ZA; Thompson WH
    J Chem Theory Comput; 2021 May; 17(5):2659-2671. PubMed ID: 33819026
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Molecular dynamics simulations of sodium dodecyl sulfate micelles in water-the effect of the force field.
    Tang X; Koenig PH; Larson RG
    J Phys Chem B; 2014 Apr; 118(14):3864-80. PubMed ID: 24620851
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Influence of water-protein hydrogen bonding on the stability of Trp-cage miniprotein. A comparison between the TIP3P and TIP4P-Ew water models.
    Paschek D; Day R; García AE
    Phys Chem Chem Phys; 2011 Nov; 13(44):19840-7. PubMed ID: 21845272
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.