These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
186 related articles for article (PubMed ID: 34881578)
1. Pattern formation of reaction-diffusion system with chemotaxis terms. Cao Q; Wu J Chaos; 2021 Nov; 31(11):113118. PubMed ID: 34881578 [TBL] [Abstract][Full Text] [Related]
2. Cross-diffusion-driven instability for reaction-diffusion systems: analysis and simulations. Madzvamuse A; Ndakwo HS; Barreira R J Math Biol; 2015 Mar; 70(4):709-43. PubMed ID: 24671430 [TBL] [Abstract][Full Text] [Related]
3. Novel Aspects in Pattern Formation Arise from Coupling Turing Reaction-Diffusion and Chemotaxis. Fraga Delfino Kunz C; Gerisch A; Glover J; Headon D; Painter KJ; Matthäus F Bull Math Biol; 2023 Dec; 86(1):4. PubMed ID: 38038776 [TBL] [Abstract][Full Text] [Related]
4. Turing Instability and Colony Formation in Spatially Extended Rosenzweig-MacArthur Predator-Prey Models with Allochthonous Resources. Zhou Z; Van Gorder RA Bull Math Biol; 2019 Dec; 81(12):5009-5053. PubMed ID: 31595381 [TBL] [Abstract][Full Text] [Related]
5. Investigating the Turing conditions for diffusion-driven instability in the presence of a binding immobile substrate. Korvasová K; Gaffney EA; Maini PK; Ferreira MA; Klika V J Theor Biol; 2015 Feb; 367():286-295. PubMed ID: 25484005 [TBL] [Abstract][Full Text] [Related]
6. Patterns governed by chemotaxis and time delay. Chen M; Wu R Phys Rev E; 2024 Jan; 109(1-1):014217. PubMed ID: 38366501 [TBL] [Abstract][Full Text] [Related]
7. Pattern formation from spatially heterogeneous reaction-diffusion systems. Van Gorder RA Philos Trans A Math Phys Eng Sci; 2021 Dec; 379(2213):20210001. PubMed ID: 34743604 [TBL] [Abstract][Full Text] [Related]
8. Long-time behavior and Turing instability induced by cross-diffusion in a three species food chain model with a Holling type-II functional response. Haile D; Xie Z Math Biosci; 2015 Sep; 267():134-48. PubMed ID: 26192388 [TBL] [Abstract][Full Text] [Related]
9. Instability of turing patterns in reaction-diffusion-ODE systems. Marciniak-Czochra A; Karch G; Suzuki K J Math Biol; 2017 Feb; 74(3):583-618. PubMed ID: 27305913 [TBL] [Abstract][Full Text] [Related]
10. Modeling the role of diffusion coefficients on Turing instability in a reaction-diffusion prey-predator system. Mukhopadhyay B; Bhattacharyya R Bull Math Biol; 2006 Feb; 68(2):293-313. PubMed ID: 16794932 [TBL] [Abstract][Full Text] [Related]
11. Stability analysis of non-autonomous reaction-diffusion systems: the effects of growing domains. Madzvamuse A; Gaffney EA; Maini PK J Math Biol; 2010 Jul; 61(1):133-64. PubMed ID: 19727733 [TBL] [Abstract][Full Text] [Related]
12. A hybrid discrete-continuum approach to model Turing pattern formation. Macfarlane FR; Chaplain MAJ; Lorenzi T Math Biosci Eng; 2020 Oct; 17(6):7442-7479. PubMed ID: 33378905 [TBL] [Abstract][Full Text] [Related]
13. Turing Patterning in Stratified Domains. Krause AL; Klika V; Halatek J; Grant PK; Woolley TE; Dalchau N; Gaffney EA Bull Math Biol; 2020 Oct; 82(10):136. PubMed ID: 33057872 [TBL] [Abstract][Full Text] [Related]
14. Turing-like instabilities from a limit cycle. Challenger JD; Burioni R; Fanelli D Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Aug; 92(2):022818. PubMed ID: 26382465 [TBL] [Abstract][Full Text] [Related]
15. Widening the criteria for emergence of Turing patterns. Kuznetsov M; Polezhaev A Chaos; 2020 Mar; 30(3):033106. PubMed ID: 32237770 [TBL] [Abstract][Full Text] [Related]
19. Patterns induced by super cross-diffusion in a predator-prey system with Michaelis-Menten type harvesting. Liu B; Wu R; Chen L Math Biosci; 2018 Apr; 298():71-79. PubMed ID: 29471009 [TBL] [Abstract][Full Text] [Related]
20. From one pattern into another: analysis of Turing patterns in heterogeneous domains via WKBJ. Krause AL; Klika V; Woolley TE; Gaffney EA J R Soc Interface; 2020 Jan; 17(162):20190621. PubMed ID: 31937231 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]