These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
161 related articles for article (PubMed ID: 34881584)
1. Partial synchronization in the second-order Kuramoto model: An auxiliary system method. Barabash NV; Belykh VN; Osipov GV; Belykh IV Chaos; 2021 Nov; 31(11):113113. PubMed ID: 34881584 [TBL] [Abstract][Full Text] [Related]
2. Hysteretic transitions in the Kuramoto model with inertia. Olmi S; Navas A; Boccaletti S; Torcini A Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Oct; 90(4):042905. PubMed ID: 25375565 [TBL] [Abstract][Full Text] [Related]
3. Stability of rotatory solitary states in Kuramoto networks with inertia. Munyayev VO; Bolotov MI; Smirnov LA; Osipov GV; Belykh IV Phys Rev E; 2022 Feb; 105(2-1):024203. PubMed ID: 35291064 [TBL] [Abstract][Full Text] [Related]
4. Emergence and analysis of Kuramoto-Sakaguchi-like models as an effective description for the dynamics of coupled Wien-bridge oscillators. English LQ; Mertens D; Abdoulkary S; Fritz CB; Skowronski K; Kevrekidis PG Phys Rev E; 2016 Dec; 94(6-1):062212. PubMed ID: 28085391 [TBL] [Abstract][Full Text] [Related]
5. Synchronization of phase oscillators with frequency-weighted coupling. Xu C; Sun Y; Gao J; Qiu T; Zheng Z; Guan S Sci Rep; 2016 Feb; 6():21926. PubMed ID: 26903110 [TBL] [Abstract][Full Text] [Related]
6. Dynamics of the generalized Kuramoto model with nonlinear coupling: Bifurcation and stability. Zou W; Wang J Phys Rev E; 2020 Jul; 102(1-1):012219. PubMed ID: 32794968 [TBL] [Abstract][Full Text] [Related]
7. Bifurcations in the Kuramoto model on graphs. Chiba H; Medvedev GS; Mizuhara MS Chaos; 2018 Jul; 28(7):073109. PubMed ID: 30070519 [TBL] [Abstract][Full Text] [Related]
8. Bistability of patterns of synchrony in Kuramoto oscillators with inertia. Belykh IV; Brister BN; Belykh VN Chaos; 2016 Sep; 26(9):094822. PubMed ID: 27781476 [TBL] [Abstract][Full Text] [Related]
9. Model reduction for Kuramoto models with complex topologies. Hancock EJ; Gottwald GA Phys Rev E; 2018 Jul; 98(1-1):012307. PubMed ID: 30110852 [TBL] [Abstract][Full Text] [Related]
10. Synchronous harmony in an ensemble of Hamiltonian mean-field oscillators and inertial Kuramoto oscillators. Ha SY; Lee J; Li Z Chaos; 2018 Nov; 28(11):113112. PubMed ID: 30501218 [TBL] [Abstract][Full Text] [Related]
11. Spontaneous synchronization of coupled oscillator systems with frequency adaptation. Taylor D; Ott E; Restrepo JG Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Apr; 81(4 Pt 2):046214. PubMed ID: 20481814 [TBL] [Abstract][Full Text] [Related]
12. Local synchronization in complex networks of coupled oscillators. Stout J; Whiteway M; Ott E; Girvan M; Antonsen TM Chaos; 2011 Jun; 21(2):025109. PubMed ID: 21721787 [TBL] [Abstract][Full Text] [Related]
13. Chapman-enskog method and synchronization of globally coupled oscillators. Bonilla LL Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Oct; 62(4 Pt A):4862-8. PubMed ID: 11089031 [TBL] [Abstract][Full Text] [Related]
14. Graph partitions and cluster synchronization in networks of oscillators. Schaub MT; O'Clery N; Billeh YN; Delvenne JC; Lambiotte R; Barahona M Chaos; 2016 Sep; 26(9):094821. PubMed ID: 27781454 [TBL] [Abstract][Full Text] [Related]
15. Exact explosive synchronization transitions in Kuramoto oscillators with time-delayed coupling. Wu H; Kang L; Liu Z; Dhamala M Sci Rep; 2018 Oct; 8(1):15521. PubMed ID: 30341395 [TBL] [Abstract][Full Text] [Related]
16. Cluster synchronization in networked nonidentical chaotic oscillators. Wang Y; Wang L; Fan H; Wang X Chaos; 2019 Sep; 29(9):093118. PubMed ID: 31575156 [TBL] [Abstract][Full Text] [Related]
17. Reentrant synchronization and pattern formation in pacemaker-entrained Kuramoto oscillators. Radicchi F; Meyer-Ortmanns H Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Aug; 74(2 Pt 2):026203. PubMed ID: 17025521 [TBL] [Abstract][Full Text] [Related]
18. Cluster synchronization induced by manifold deformation. Wang Y; Zhang D; Wang L; Li Q; Cao H; Wang X Chaos; 2022 Sep; 32(9):093139. PubMed ID: 36182364 [TBL] [Abstract][Full Text] [Related]
19. Asymmetry in the Kuramoto model with nonidentical coupling. Elaeva M; Blanter E; Shnirman M; Shapoval A Phys Rev E; 2023 Jun; 107(6-1):064201. PubMed ID: 37464665 [TBL] [Abstract][Full Text] [Related]
20. Mesoscopic model reduction for the collective dynamics of sparse coupled oscillator networks. Smith LD; Gottwald GA Chaos; 2021 Jul; 31(7):073116. PubMed ID: 34340344 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]