These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 34881589)

  • 1. Bifurcations of clusters and collective oscillations in networks of bistable units.
    Salman M; Bick C; Krischer K
    Chaos; 2021 Nov; 31(11):113140. PubMed ID: 34881589
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oscillations in an array of bistable microelectrodes coupled through a globally conserved quantity.
    Bozdech S; Biecher Y; Savinova ER; Schuster R; Krischer K; Bonnefont A
    Chaos; 2018 Apr; 28(4):045113. PubMed ID: 31906625
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transcritical riddling in a system of coupled maps.
    Popovych O; Maistrenko Y; Mosekilde E; Pikovsky A; Kurths J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Mar; 63(3 Pt 2):036201. PubMed ID: 11308735
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oscillations in the bistable regime of neuronal networks.
    Roxin A; Compte A
    Phys Rev E; 2016 Jul; 94(1-1):012410. PubMed ID: 27575167
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Symmetry, Hopf bifurcation, and the emergence of cluster solutions in time delayed neural networks.
    Wang Z; Campbell SA
    Chaos; 2017 Nov; 27(11):114316. PubMed ID: 29195320
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ecoepidemic predator-prey model with feeding satiation, prey herd behavior and abandoned infected prey.
    Kooi BW; Venturino E
    Math Biosci; 2016 Apr; 274():58-72. PubMed ID: 26874217
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Breathing current domains in globally coupled electrochemical systems: a comparison with a semiconductor model.
    Plenge F; Rodin P; Schöll E; Krischer K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Nov; 64(5 Pt 2):056229. PubMed ID: 11736076
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Emergence and stability of periodic two-cluster states for ensembles of excitable units.
    Ronge R; Zaks MA
    Phys Rev E; 2021 Jan; 103(1-1):012206. PubMed ID: 33601632
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Emergence of multistability and strongly asymmetric collective modes in two quorum sensing coupled identical ring oscillators.
    Hellen EH; Volkov E
    Chaos; 2020 Dec; 30(12):121101. PubMed ID: 33380051
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bifurcation analysis of a model of mitotic control in frog eggs.
    Borisuk MT; Tyson JJ
    J Theor Biol; 1998 Nov; 195(1):69-85. PubMed ID: 9802951
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of asymmetry on the loss of chaos synchronization.
    Kim SY; Lim W
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Jul; 64(1 Pt 2):016211. PubMed ID: 11461371
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Birth and destruction of collective oscillations in a network of two populations of coupled type 1 neurons.
    Jüttner B; Henriksen C; Martens EA
    Chaos; 2021 Feb; 31(2):023141. PubMed ID: 33653075
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ensembles of excitable two-state units with delayed feedback.
    Kouvaris N; Müller F; Schimansky-Geier L
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Dec; 82(6 Pt 1):061124. PubMed ID: 21230661
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transcritical bifurcations in nonintegrable Hamiltonian systems.
    Brack M; Tanaka K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Apr; 77(4 Pt 2):046205. PubMed ID: 18517708
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bifurcation structure of two coupled FHN neurons with delay.
    Farajzadeh Tehrani N; Razvan M
    Math Biosci; 2015 Dec; 270(Pt A):41-56. PubMed ID: 26476143
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamics of FitzHugh-Nagumo excitable systems with delayed coupling.
    Burić N; Todorović D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Jun; 67(6 Pt 2):066222. PubMed ID: 16241341
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Model reduction for the collective dynamics of globally coupled oscillators: From finite networks to the thermodynamic limit.
    Smith LD; Gottwald GA
    Chaos; 2020 Sep; 30(9):093107. PubMed ID: 33003913
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hopf bifurcations in multiple-parameter space of the Hodgkin-Huxley equations I. Global organization of bistable periodic solutions.
    Fukai H; Doi S; Nomura T; Sato S
    Biol Cybern; 2000 Mar; 82(3):215-22. PubMed ID: 10664108
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamics of ERK regulation in the processive limit.
    Conradi C; Obatake N; Shiu A; Tang X
    J Math Biol; 2021 Mar; 82(4):32. PubMed ID: 33694015
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cluster synchronization in networks of identical oscillators with α-function pulse coupling.
    Chen B; Engelbrecht JR; Mirollo R
    Phys Rev E; 2017 Feb; 95(2-1):022207. PubMed ID: 28297946
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.