These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
146 related articles for article (PubMed ID: 34881592)
1. Time-delayed Kuramoto model in the Watts-Strogatz small-world networks. Ameli S; Karimian M; Shahbazi F Chaos; 2021 Nov; 31(11):113125. PubMed ID: 34881592 [TBL] [Abstract][Full Text] [Related]
2. Effects of partial time delays on phase synchronization in Watts-Strogatz small-world neuronal networks. Sun X; Perc M; Kurths J Chaos; 2017 May; 27(5):053113. PubMed ID: 28576097 [TBL] [Abstract][Full Text] [Related]
3. Continuous and discontinuous transitions to synchronization. Wang C; Garnier NB Chaos; 2016 Nov; 26(11):113119. PubMed ID: 27907995 [TBL] [Abstract][Full Text] [Related]
4. Exact solution for first-order synchronization transition in a generalized Kuramoto model. Hu X; Boccaletti S; Huang W; Zhang X; Liu Z; Guan S; Lai CH Sci Rep; 2014 Dec; 4():7262. PubMed ID: 25434404 [TBL] [Abstract][Full Text] [Related]
5. Exact explosive synchronization transitions in Kuramoto oscillators with time-delayed coupling. Wu H; Kang L; Liu Z; Dhamala M Sci Rep; 2018 Oct; 8(1):15521. PubMed ID: 30341395 [TBL] [Abstract][Full Text] [Related]
6. Nonuniversal transitions to synchrony in the Sakaguchi-Kuramoto model. Omel'chenko OE; Wolfrum M Phys Rev Lett; 2012 Oct; 109(16):164101. PubMed ID: 23215080 [TBL] [Abstract][Full Text] [Related]
7. Synchronization transitions and sensitivity to asymmetry in the bimodal Kuramoto systems with Cauchy noise. Kostin VA; Munyaev VO; Osipov GV; Smirnov LA Chaos; 2023 Aug; 33(8):. PubMed ID: 38060795 [TBL] [Abstract][Full Text] [Related]
8. Bifurcations in the Kuramoto model on graphs. Chiba H; Medvedev GS; Mizuhara MS Chaos; 2018 Jul; 28(7):073109. PubMed ID: 30070519 [TBL] [Abstract][Full Text] [Related]
9. Explosive synchronization coexists with classical synchronization in the Kuramoto model. Danziger MM; Moskalenko OI; Kurkin SA; Zhang X; Havlin S; Boccaletti S Chaos; 2016 Jun; 26(6):065307. PubMed ID: 27369869 [TBL] [Abstract][Full Text] [Related]
10. Dynamics of coupled Kuramoto oscillators with distributed delays. Ross A; Kyrychko SN; Blyuss KB; Kyrychko YN Chaos; 2021 Oct; 31(10):103107. PubMed ID: 34717313 [TBL] [Abstract][Full Text] [Related]
11. Control of amplitude chimeras by time delay in oscillator networks. Gjurchinovski A; Schöll E; Zakharova A Phys Rev E; 2017 Apr; 95(4-1):042218. PubMed ID: 28505829 [TBL] [Abstract][Full Text] [Related]
12. Explosive synchronization in interlayer phase-shifted Kuramoto oscillators on multiplex networks. Kumar A; Jalan S Chaos; 2021 Apr; 31(4):041103. PubMed ID: 34251235 [TBL] [Abstract][Full Text] [Related]
13. Dynamics of the generalized Kuramoto model with nonlinear coupling: Bifurcation and stability. Zou W; Wang J Phys Rev E; 2020 Jul; 102(1-1):012219. PubMed ID: 32794968 [TBL] [Abstract][Full Text] [Related]
14. Phase synchronization in the two-dimensional Kuramoto model: Vortices and duality. Sarkar M; Gupte N Phys Rev E; 2021 Mar; 103(3-1):032204. PubMed ID: 33862679 [TBL] [Abstract][Full Text] [Related]
15. Discontinuous phase transition in the Kuramoto model with asymmetric dynamic interaction. Yang SG; Park JI; Kim BJ Phys Rev E; 2020 Nov; 102(5-1):052207. PubMed ID: 33327129 [TBL] [Abstract][Full Text] [Related]
17. Route to synchronization in coupled phase oscillators with frequency-dependent coupling: Explosive or continuous? Kumar M; Gupta S Phys Rev E; 2022 Oct; 106(4-1):044310. PubMed ID: 36397479 [TBL] [Abstract][Full Text] [Related]
18. Synchronization in a system of Kuramoto oscillators with distributed Gaussian noise. Campa A; Gupta S Phys Rev E; 2023 Dec; 108(6-1):064124. PubMed ID: 38243549 [TBL] [Abstract][Full Text] [Related]