These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 34881617)

  • 1. Bifurcation analysis of multistability of synchronous states in the system of two delay-coupled oscillators.
    Adilova AB; Balakin MI; Gerasimova SA; Ryskin NM
    Chaos; 2021 Nov; 31(11):113103. PubMed ID: 34881617
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Amplitude and phase effects on the synchronization of delay-coupled oscillators.
    D'Huys O; Vicente R; Danckaert J; Fischer I
    Chaos; 2010 Dec; 20(4):043127. PubMed ID: 21198097
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adaptive synchronization in delay-coupled networks of Stuart-Landau oscillators.
    Selivanov AA; Lehnert J; Dahms T; Hövel P; Fradkov AL; Schöll E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jan; 85(1 Pt 2):016201. PubMed ID: 22400637
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Occasional coupling enhances amplitude death in delay-coupled oscillators.
    Ghosh A; Mondal S; Sujith RI
    Chaos; 2022 Oct; 32(10):101106. PubMed ID: 36319273
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bipartite networks of oscillators with distributed delays: Synchronization branches and multistability.
    Punetha N; Ramaswamy R; Atay FM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Apr; 91(4):042906. PubMed ID: 25974561
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A common lag scenario in quenching of oscillation in coupled oscillators.
    Suresh K; Sabarathinam S; Thamilmaran K; Kurths J; Dana SK
    Chaos; 2016 Aug; 26(8):083104. PubMed ID: 27586600
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Controlling synchrony by delay coupling in networks: from in-phase to splay and cluster states.
    Choe CU; Dahms T; Hövel P; Schöll E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Feb; 81(2 Pt 2):025205. PubMed ID: 20365621
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synchronization in a system of globally coupled oscillators with time delay.
    Choi MY; Kim HJ; Kim D; Hong H
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Jan; 61(1):371-81. PubMed ID: 11046275
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of propagation delay in coupled oscillators under direct-indirect coupling: Theory and experiment.
    Hui N; Biswas D; Banerjee T; Kurths J
    Chaos; 2021 Jul; 31(7):073115. PubMed ID: 34340328
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hopf bifurcation and multistability in a system of phase oscillators.
    Astakhov S; Fujiwara N; Gulay A; Tsukamoto N; Kurths J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Sep; 88(3):032908. PubMed ID: 24125326
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phase multistability of self-modulated oscillations.
    Sosnovtseva OV; Postnov DE; Nekrasov AM; Mosekilde E; Holstein-Rathlou NH
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Sep; 66(3 Pt 2A):036224. PubMed ID: 12366241
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of axonal delay in the synchronization of networks of coupled cortical oscillators.
    Crook SM; Ermentrout GB; Vanier MC; Bower JM
    J Comput Neurosci; 1997 Apr; 4(2):161-72. PubMed ID: 9154522
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neurologically Motivated Coupling Functions in Models of Motor Coordination.
    Słowiński P; Al-Ramadhani S; Tsaneva-Atanasova K
    SIAM J Appl Dyn Syst; 2020; 19(1):208-232. PubMed ID: 31992962
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Universal occurrence of the phase-flip bifurcation in time-delay coupled systems.
    Prasad A; Dana SK; Karnatak R; Kurths J; Blasius B; Ramaswamy R
    Chaos; 2008 Jun; 18(2):023111. PubMed ID: 18601478
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Origin of amplitude synchronization in coupled nonidentical oscillators.
    Qiu Q; Zhou B; Wang P; He L; Xiao Y; Yang Z; Zhan M
    Phys Rev E; 2020 Feb; 101(2-1):022210. PubMed ID: 32168617
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phase multistability and phase synchronization in an array of locally coupled period-doubling oscillators.
    Shabunin A; Feudel U; Astakhov V
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Aug; 80(2 Pt 2):026211. PubMed ID: 19792235
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synchronization of phase oscillators with frequency-weighted coupling.
    Xu C; Sun Y; Gao J; Qiu T; Zheng Z; Guan S
    Sci Rep; 2016 Feb; 6():21926. PubMed ID: 26903110
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phase locking of two limit cycle oscillators with delay coupling.
    Usacheva SA; Ryskin NM
    Chaos; 2014 Jun; 24(2):023123. PubMed ID: 24985437
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Collective dynamics of globally delay-coupled complex Ginzburg-Landau oscillators.
    Thakur B; Sen A
    Chaos; 2019 May; 29(5):053104. PubMed ID: 31154762
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phase-locked patterns and amplitude death in a ring of delay-coupled limit cycle oscillators.
    Dodla R; Sen A; Johnston GL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 May; 69(5 Pt 2):056217. PubMed ID: 15244914
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.