These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
113 related articles for article (PubMed ID: 34881620)
1. The essential synchronization backbone problem. Diggans CT; Fish J; AlMomani AAR; Bollt EM Chaos; 2021 Nov; 31(11):113142. PubMed ID: 34881620 [TBL] [Abstract][Full Text] [Related]
2. Synchronization of complex dynamical networks via impulsive control. Zhang G; Liu Z; Ma Z Chaos; 2007 Dec; 17(4):043126. PubMed ID: 18163790 [TBL] [Abstract][Full Text] [Related]
3. Onset of synchronization in weighted scale-free networks. Wang WX; Huang L; Lai YC; Chen G Chaos; 2009 Mar; 19(1):013134. PubMed ID: 19334998 [TBL] [Abstract][Full Text] [Related]
4. Cluster synchronization in networks of coupled nonidentical dynamical systems. Lu W; Liu B; Chen T Chaos; 2010 Mar; 20(1):013120. PubMed ID: 20370275 [TBL] [Abstract][Full Text] [Related]
5. Introduction to Focus Issue: Symmetry and optimization in the synchronization and collective behavior of complex systems. Taylor D; Skardal PS; Sun J Chaos; 2020 Jun; 30(6):060401. PubMed ID: 32611075 [TBL] [Abstract][Full Text] [Related]
6. Transition to complete synchronization and global intermittent synchronization in an array of time-delay systems. Suresh R; Senthilkumar DV; Lakshmanan M; Kurths J Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jul; 86(1 Pt 2):016212. PubMed ID: 23005512 [TBL] [Abstract][Full Text] [Related]
7. Inferring the physical connectivity of complex networks from their functional dynamics. Ta HX; Yoon CN; Holm L; Han SK BMC Syst Biol; 2010 May; 4():70. PubMed ID: 20500902 [TBL] [Abstract][Full Text] [Related]
8. SYNCHRONIZATION OF HETEROGENEOUS OSCILLATORS UNDER NETWORK MODIFICATIONS: PERTURBATION AND OPTIMIZATION OF THE SYNCHRONY ALIGNMENT FUNCTION. Taylor D; Skardal PS; Sun J SIAM J Appl Math; 2016; 76(5):1984-2008. PubMed ID: 27872501 [TBL] [Abstract][Full Text] [Related]
10. Exponential stability of synchronization in asymmetrically coupled dynamical networks. Li Z Chaos; 2008 Jun; 18(2):023124. PubMed ID: 18601491 [TBL] [Abstract][Full Text] [Related]
11. Synchronization of delay-coupled nonlinear oscillators: an approach based on the stability analysis of synchronized equilibria. Michiels W; Nijmeijer H Chaos; 2009 Sep; 19(3):033110. PubMed ID: 19791990 [TBL] [Abstract][Full Text] [Related]
12. Impulsive synchronization of coupled dynamical networks with nonidentical Duffing oscillators and coupling delays. Wang Z; Duan Z; Cao J Chaos; 2012 Mar; 22(1):013140. PubMed ID: 22463016 [TBL] [Abstract][Full Text] [Related]
13. Control for a synchronization-desynchronization switch. He Z; Wang X; Zhang GY; Zhan M Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jul; 90(1):012909. PubMed ID: 25122362 [TBL] [Abstract][Full Text] [Related]
14. Distributed neural network control for adaptive synchronization of uncertain dynamical multiagent systems. Peng Z; Wang D; Zhang H; Sun G IEEE Trans Neural Netw Learn Syst; 2014 Aug; 25(8):1508-19. PubMed ID: 25050948 [TBL] [Abstract][Full Text] [Related]
15. Adaptive coupling for achieving stable synchronization of chaos. Sorrentino F Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Nov; 80(5 Pt 2):056206. PubMed ID: 20365059 [TBL] [Abstract][Full Text] [Related]
16. Synchronization of chaotic systems with uncertain chaotic parameters by linear coupling and pragmatical adaptive tracking. Ge ZM; Yang CH Chaos; 2008 Dec; 18(4):043129. PubMed ID: 19123639 [TBL] [Abstract][Full Text] [Related]
17. Pinning Synchronization of Directed Networks With Switching Topologies: A Multiple Lyapunov Functions Approach. Wen G; Yu W; Hu G; Cao J; Yu X IEEE Trans Neural Netw Learn Syst; 2015 Dec; 26(12):3239-50. PubMed ID: 26595418 [TBL] [Abstract][Full Text] [Related]
18. Dynamical parameter identification from a scalar time series. Yu D; Liu F Chaos; 2008 Dec; 18(4):043108. PubMed ID: 19123618 [TBL] [Abstract][Full Text] [Related]
19. The stability of adaptive synchronization of chaotic systems. Sorrentino F; Barlev G; Cohen AB; Ott E Chaos; 2010 Mar; 20(1):013103. PubMed ID: 20370258 [TBL] [Abstract][Full Text] [Related]
20. Complete characterization of the stability of cluster synchronization in complex dynamical networks. Sorrentino F; Pecora LM; Hagerstrom AM; Murphy TE; Roy R Sci Adv; 2016 Apr; 2(4):e1501737. PubMed ID: 27152349 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]