These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 34881870)

  • 21. Laser Writing of Janus Graphene/Kevlar Textile for Intelligent Protective Clothing.
    Wang H; Wang H; Wang Y; Su X; Wang C; Zhang M; Jian M; Xia K; Liang X; Lu H; Li S; Zhang Y
    ACS Nano; 2020 Mar; 14(3):3219-3226. PubMed ID: 32083839
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Flexible Graphene-Based Wearable Gas and Chemical Sensors.
    Singh E; Meyyappan M; Nalwa HS
    ACS Appl Mater Interfaces; 2017 Oct; 9(40):34544-34586. PubMed ID: 28876901
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Electrochemical multi-analyte point-of-care perspiration sensors using on-chip three-dimensional graphene electrodes.
    Bauer M; Wunderlich L; Weinzierl F; Lei Y; Duerkop A; Alshareef HN; Baeumner AJ
    Anal Bioanal Chem; 2021 Jan; 413(3):763-777. PubMed ID: 32989512
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Laser-scribed phosphorus-doped graphene derived from Kevlar textile for enhanced wearable micro-supercapacitor.
    Rao Y; Yuan M; Gao B; Li H; Yu J; Chen X
    J Colloid Interface Sci; 2023 Jan; 630(Pt A):586-594. PubMed ID: 36272214
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Graphene-enabled wearable sensors for healthcare monitoring.
    Zhang H; He R; Niu Y; Han F; Li J; Zhang X; Xu F
    Biosens Bioelectron; 2022 Feb; 197():113777. PubMed ID: 34781177
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Stretchable Sensors and Electro-Thermal Actuators with Self-Sensing Capability Using the Laser-Induced Graphene Technology.
    Wang H; Zhao Z; Liu P; Pan Y; Guo X
    ACS Appl Mater Interfaces; 2022 Sep; 14(36):41283-41295. PubMed ID: 36037172
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Biomimetic Turbinate-like Artificial Nose for Hydrogen Detection Based on 3D Porous Laser-Induced Graphene.
    Zhu J; Cho M; Li Y; Cho I; Suh JH; Orbe DD; Jeong Y; Ren TL; Park I
    ACS Appl Mater Interfaces; 2019 Jul; 11(27):24386-24394. PubMed ID: 31192578
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Laser-Induced Graphene.
    Ye R; James DK; Tour JM
    Acc Chem Res; 2018 Jul; 51(7):1609-1620. PubMed ID: 29924584
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Paper-based laser-induced graphene for sustainable and flexible microsupercapacitor applications.
    Coelho J; Correia RF; Silvestre S; Pinheiro T; Marques AC; Correia MRP; Pinto JV; Fortunato E; Martins R
    Mikrochim Acta; 2022 Dec; 190(1):40. PubMed ID: 36585475
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Stretchable and Skin-Conformable Conductors Based on Polyurethane/Laser-Induced Graphene.
    Dallinger A; Keller K; Fitzek H; Greco F
    ACS Appl Mater Interfaces; 2020 Apr; 12(17):19855-19865. PubMed ID: 32249561
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Laser-induced graphene-based electrochemical biosensors for environmental applications: a perspective.
    Wanjari VP; Reddy AS; Duttagupta SP; Singh SP
    Environ Sci Pollut Res Int; 2023 Mar; 30(15):42643-42657. PubMed ID: 35622288
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A performance improvement of enzyme-based electrochemical lactate sensor fabricated by electroplating novel PdCu mediator on a laser induced graphene electrode.
    Han JH; Hyun Park S; Kim S; Jungho Pak J
    Bioelectrochemistry; 2022 Dec; 148():108259. PubMed ID: 36179392
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Highly Sensitive and Reliable Piezoresistive Strain Sensor Based on Cobalt Nanoporous Carbon-Incorporated Laser-Induced Graphene for Smart Healthcare Wearables.
    Kim D; Chhetry A; Zahed MA; Sharma S; Jeong S; Song H; Park JY
    ACS Appl Mater Interfaces; 2023 Jan; 15(1):1475-1485. PubMed ID: 36571793
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Flexible Laser-Induced Graphene for Nitrogen Sensing in Soil.
    Garland NT; McLamore ES; Cavallaro ND; Mendivelso-Perez D; Smith EA; Jing D; Claussen JC
    ACS Appl Mater Interfaces; 2018 Nov; 10(45):39124-39133. PubMed ID: 30284450
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A laser-induced graphene electrochemical immunosensor for label-free CEA monitoring in serum.
    Wang G; Chen J; Huang L; Chen Y; Li Y
    Analyst; 2021 Oct; 146(21):6631-6642. PubMed ID: 34591043
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Electrochemical Sensing of Neonicotinoids Using Laser-Induced Graphene.
    Johnson ZT; Williams K; Chen B; Sheets R; Jared N; Li J; Smith EA; Claussen JC
    ACS Sens; 2021 Aug; 6(8):3063-3071. PubMed ID: 34370948
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Disposable Paper-Based Biosensors: Optimizing the Electrochemical Properties of Laser-Induced Graphene.
    Bhattacharya G; Fishlock SJ; Hussain S; Choudhury S; Xiang A; Kandola B; Pritam A; Soin N; Roy SS; McLaughlin JA
    ACS Appl Mater Interfaces; 2022 Jul; 14(27):31109-31120. PubMed ID: 35767835
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Laser-Induced Graphene (LIG) as a Smart and Sustainable Material to Restrain Pandemics and Endemics: A Perspective.
    Dixit N; Singh SP
    ACS Omega; 2022 Feb; 7(6):5112-5130. PubMed ID: 35187327
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Affordable equipment to fabricate laser-induced graphene electrodes for portable electrochemical sensing.
    Costa WRP; Rocha RG; de Faria LV; Matias TA; Ramos DLO; Dias AGC; Fernandes GL; Richter EM; Muñoz RAA
    Mikrochim Acta; 2022 Apr; 189(5):185. PubMed ID: 35396635
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Graphene-based wearable sensors.
    Qiao Y; Li X; Hirtz T; Deng G; Wei Y; Li M; Ji S; Wu Q; Jian J; Wu F; Shen Y; Tian H; Yang Y; Ren TL
    Nanoscale; 2019 Nov; 11(41):18923-18945. PubMed ID: 31532436
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.