These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 34881885)

  • 1. Heterodimeric Non-heme Iron Enzymes in Fungal Meroterpenoid Biosynthesis.
    Li X; Awakawa T; Mori T; Ling M; Hu D; Wu B; Abe I
    J Am Chem Soc; 2021 Dec; 143(50):21425-21432. PubMed ID: 34881885
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nonheme Iron- and 2-Oxoglutarate-Dependent Dioxygenases in Fungal Meroterpenoid Biosynthesis.
    Abe I
    Chem Pharm Bull (Tokyo); 2020; 68(9):823-831. PubMed ID: 32879222
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure function and engineering of multifunctional non-heme iron dependent oxygenases in fungal meroterpenoid biosynthesis.
    Nakashima Y; Mori T; Nakamura H; Awakawa T; Hoshino S; Senda M; Senda T; Abe I
    Nat Commun; 2018 Jan; 9(1):104. PubMed ID: 29317628
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Uncovering the unusual D-ring construction in terretonin biosynthesis by collaboration of a multifunctional cytochrome P450 and a unique isomerase.
    Matsuda Y; Iwabuchi T; Wakimoto T; Awakawa T; Abe I
    J Am Chem Soc; 2015 Mar; 137(9):3393-401. PubMed ID: 25671343
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oxidative tailoring reactions catalyzed by nonheme iron-dependent enzymes: streptorubin B biosynthesis as an example.
    Sydor PK; Challis GL
    Methods Enzymol; 2012; 516():195-218. PubMed ID: 23034230
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genome Mining and Comparative Biosynthesis of Meroterpenoids from Two Phylogenetically Distinct Fungi.
    Zhang X; Wang TT; Xu QL; Xiong Y; Zhang L; Han H; Xu K; Guo WJ; Xu Q; Tan RX; Ge HM
    Angew Chem Int Ed Engl; 2018 Jul; 57(27):8184-8188. PubMed ID: 29797385
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reconstitution of a fungal meroterpenoid biosynthesis reveals the involvement of a novel family of terpene cyclases.
    Itoh T; Tokunaga K; Matsuda Y; Fujii I; Abe I; Ebizuka Y; Kushiro T
    Nat Chem; 2010 Oct; 2(10):858-64. PubMed ID: 20861902
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Non-heme iron enzyme-catalyzed complex transformations: Endoperoxidation, cyclopropanation, orthoester, oxidative C-C and C-S bond formation reactions in natural product biosynthesis.
    Song H; Naowarojna N; Cheng R; Lopez J; Liu P
    Adv Protein Chem Struct Biol; 2019; 117():1-61. PubMed ID: 31564305
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Unusual chemistries in fungal meroterpenoid biosynthesis.
    Matsuda Y; Awakawa T; Mori T; Abe I
    Curr Opin Chem Biol; 2016 Apr; 31():1-7. PubMed ID: 26610189
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular basis for the unusual ring reconstruction in fungal meroterpenoid biogenesis.
    Mori T; Iwabuchi T; Hoshino S; Wang H; Matsuda Y; Abe I
    Nat Chem Biol; 2017 Oct; 13(10):1066-1073. PubMed ID: 28759016
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular insights into the unusually promiscuous and catalytically versatile Fe(II)/α-ketoglutarate-dependent oxygenase SptF.
    Tao H; Mori T; Chen H; Lyu S; Nonoyama A; Lee S; Abe I
    Nat Commun; 2022 Jan; 13(1):95. PubMed ID: 35013177
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spiro-ring formation is catalyzed by a multifunctional dioxygenase in austinol biosynthesis.
    Matsuda Y; Awakawa T; Wakimoto T; Abe I
    J Am Chem Soc; 2013 Jul; 135(30):10962-5. PubMed ID: 23865690
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Two separate gene clusters encode the biosynthetic pathway for the meroterpenoids austinol and dehydroaustinol in Aspergillus nidulans.
    Lo HC; Entwistle R; Guo CJ; Ahuja M; Szewczyk E; Hung JH; Chiang YM; Oakley BR; Wang CC
    J Am Chem Soc; 2012 Mar; 134(10):4709-20. PubMed ID: 22329759
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Radical fluorine transfer catalysed by an engineered nonheme iron enzyme.
    Zhao Q; Chen Z; Rui J; Huang X
    Methods Enzymol; 2024; 696():231-247. PubMed ID: 38658081
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Post-translational self-hydroxylation: a probe for oxygen activation mechanisms in non-heme iron enzymes.
    Farquhar ER; Koehntop KD; Emerson JP; Que L
    Biochem Biophys Res Commun; 2005 Dec; 338(1):230-9. PubMed ID: 16165090
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nitrene Transfer Catalyzed by a Non-Heme Iron Enzyme and Enhanced by Non-Native Small-Molecule Ligands.
    Goldberg NW; Knight AM; Zhang RK; Arnold FH
    J Am Chem Soc; 2019 Dec; 141(50):19585-19588. PubMed ID: 31790588
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigating the oxidation of alkenes by non-heme iron enzyme mimics.
    Barry SM; Mueller-Bunz H; Rutledge PJ
    Org Biomol Chem; 2012 Sep; 10(36):7372-81. PubMed ID: 22858835
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Novofumigatonin biosynthesis involves a non-heme iron-dependent endoperoxide isomerase for orthoester formation.
    Matsuda Y; Bai T; Phippen CBW; Nødvig CS; Kjærbølling I; Vesth TC; Andersen MR; Mortensen UH; Gotfredsen CH; Abe I; Larsen TO
    Nat Commun; 2018 Jul; 9(1):2587. PubMed ID: 29968715
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of Outer-Sphere Side Chain Substitutions on the Fate of the trans Iron-Nitrosyl Dimer in Heme/Nonheme Engineered Myoglobins (Fe(B)Mbs): Insights into the Mechanism of Denitrifying NO Reductases.
    Matsumura H; Chakraborty S; Reed J; Lu Y; Moënne-Loccoz P
    Biochemistry; 2016 Apr; 55(14):2091-9. PubMed ID: 27003474
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Orthoester formation in fungal meroterpenoid austalide F biosynthesis.
    Awakawa T; Liu W; Bai T; Taniguchi T; Abe I
    Philos Trans R Soc Lond B Biol Sci; 2023 Feb; 378(1871):20220037. PubMed ID: 36633279
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.