These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 34882477)

  • 1. Evolution of the grass leaf by primordium extension and petiole-lamina remodeling.
    Richardson AE; Cheng J; Johnston R; Kennaway R; Conlon BR; Rebocho AB; Kong H; Scanlon MJ; Hake S; Coen E
    Science; 2021 Dec; 374(6573):1377-1381. PubMed ID: 34882477
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Keep on growing: building and patterning leaves in the grasses.
    Lewis MW; Hake S
    Curr Opin Plant Biol; 2016 Feb; 29():80-6. PubMed ID: 26751036
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On the mechanisms of development in monocot and eudicot leaves.
    Conklin PA; Strable J; Li S; Scanlon MJ
    New Phytol; 2019 Jan; 221(2):706-724. PubMed ID: 30106472
    [TBL] [Abstract][Full Text] [Related]  

  • 4. From genes to shape in leaf development and evolution.
    Wilson-Sánchez D; Bhatia N; Runions A; Tsiantis M
    Curr Biol; 2022 Nov; 32(21):R1215-R1222. PubMed ID: 36347226
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Developmental and biophysical determinants of grass leaf size worldwide.
    Baird AS; Taylor SH; Pasquet-Kok J; Vuong C; Zhang Y; Watcharamongkol T; Scoffoni C; Edwards EJ; Christin PA; Osborne CP; Sack L
    Nature; 2021 Apr; 592(7853):242-247. PubMed ID: 33762735
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The grass leaf developmental gradient as a platform for a systems understanding of the anatomical specialization of C(4) leaves.
    Nelson T
    J Exp Bot; 2011 May; 62(9):3039-48. PubMed ID: 21414963
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Key proliferative activity in the junction between the leaf blade and leaf petiole of Arabidopsis.
    Ichihashi Y; Kawade K; Usami T; Horiguchi G; Takahashi T; Tsukaya H
    Plant Physiol; 2011 Nov; 157(3):1151-62. PubMed ID: 21880932
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evolutionary and developmental studies of unifacial leaves in monocots: Juncus as a model system.
    Yamaguchi T; Tsukaya H
    J Plant Res; 2010 Jan; 123(1):35-41. PubMed ID: 19693435
    [TBL] [Abstract][Full Text] [Related]  

  • 9. WOX gene phylogeny in Poaceae: a comparative approach addressing leaf and embryo development.
    Nardmann J; Zimmermann R; Durantini D; Kranz E; Werr W
    Mol Biol Evol; 2007 Nov; 24(11):2474-84. PubMed ID: 17768306
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A common developmental program can produce diverse leaf shapes.
    Runions A; Tsiantis M; Prusinkiewicz P
    New Phytol; 2017 Oct; 216(2):401-418. PubMed ID: 28248421
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ontogeny of the sheathing leaf base in maize (Zea mays).
    Johnston R; Leiboff S; Scanlon MJ
    New Phytol; 2015 Jan; 205(1):306-15. PubMed ID: 25195692
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Starch Accumulation in the Bundle Sheaths of C3 Plants: A Possible Pre-Condition for C4 Photosynthesis.
    Miyake H
    Plant Cell Physiol; 2016 May; 57(5):890-6. PubMed ID: 26936788
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fusoid cells in the grass family Poaceae (Poales): a developmental study reveals homologies and suggests new insights into their functional role in young leaves.
    Leandro TD; Rodrigues TM; Clark LG; Scatena VL
    Ann Bot; 2018 Nov; 122(5):833-848. PubMed ID: 30395186
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Linking leaf and root trait syndromes among 39 grassland and savannah species.
    Tjoelker MG; Craine JM; Wedin D; Reich PB; Tilman D
    New Phytol; 2005 Aug; 167(2):493-508. PubMed ID: 15998401
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Wox3-patterning module organizes planar growth in grass leaves and ligules.
    Satterlee JW; Evans LJ; Conlon BR; Conklin P; Martinez-Gomez J; Yen JR; Wu H; Sylvester AW; Specht CD; Cheng J; Johnston R; Coen E; Scanlon MJ
    Nat Plants; 2023 May; 9(5):720-732. PubMed ID: 37142751
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Generation of leaf shape through early patterns of growth and tissue polarity.
    Kuchen EE; Fox S; de Reuille PB; Kennaway R; Bensmihen S; Avondo J; Calder GM; Southam P; Robinson S; Bangham A; Coen E
    Science; 2012 Mar; 335(6072):1092-6. PubMed ID: 22383846
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Leaf hydraulic conductivity and photosynthesis are genetically correlated in an annual grass.
    Maherali H; Sherrard ME; Clifford MH; Latta RG
    New Phytol; 2008; 180(1):240-247. PubMed ID: 18637067
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Leaf adaxial-abaxial polarity specification and lamina outgrowth: evolution and development.
    Yamaguchi T; Nukazuka A; Tsukaya H
    Plant Cell Physiol; 2012 Jul; 53(7):1180-94. PubMed ID: 22619472
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On the evolution of developmental mechanisms: Divergent polarities in leaf growth as a case study.
    Gupta MD; Nath U
    Plant Signal Behav; 2016; 11(1):e1126030. PubMed ID: 26817939
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gradual shifts in sites of free-auxin production during leaf-primordium development and their role in vascular differentiation and leaf morphogenesis in Arabidopsis.
    Aloni R; Schwalm K; Langhans M; Ullrich CI
    Planta; 2003 Mar; 216(5):841-53. PubMed ID: 12624772
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.