These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 34882540)

  • 1. Inverse Reinforcement Learning Intra-Operative Path Planning for Steerable Needle.
    Segato A; Marzo MD; Zucchelli S; Galvan S; Secoli R; De Momi E
    IEEE Trans Biomed Eng; 2022 Jun; 69(6):1995-2005. PubMed ID: 34882540
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Path Replanning for Orientation-Constrained Needle Steering.
    Pinzi M; Watts T; Secoli R; Galvan S; Baena FRY
    IEEE Trans Biomed Eng; 2021 May; 68(5):1459-1466. PubMed ID: 33606622
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Robot-assisted flexible needle insertion using universal distributional deep reinforcement learning.
    Tan X; Lee Y; Chng CB; Lim KB; Chui CK
    Int J Comput Assist Radiol Surg; 2020 Feb; 15(2):341-349. PubMed ID: 31768886
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Heuristically Accelerated Reinforcement Learning-Based Neurosurgical Path Planner.
    Ji G; Gao Q; Zhang T; Cao L; Sun Z
    Cyborg Bionic Syst; 2023; 4():0026. PubMed ID: 37229101
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Needle-tissue interaction model based needle path planning method.
    Lei Y; Du S; Li M; Xu T; Hu Y; Wang Z
    Comput Methods Programs Biomed; 2024 Jan; 243():107858. PubMed ID: 37879198
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling of path planning and needle steering with path tracking in anatomical soft tissues for minimally invasive surgery.
    Li P; Jiang S; Liang D; Yang Z; Yu Y; Wang W
    Med Eng Phys; 2017 Mar; 41():35-45. PubMed ID: 28100406
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Toward certifiable optimal motion planning for medical steerable needles.
    Fu M; Solovey K; Salzman O; Alterovitz R
    Int J Rob Res; 2023 Sep; 42(10):798-826. PubMed ID: 37905207
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An adaptive finite element model for steerable needles.
    Terzano M; Dini D; Rodriguez Y Baena F; Spagnoli A; Oldfield M
    Biomech Model Mechanobiol; 2020 Oct; 19(5):1809-1825. PubMed ID: 32152795
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 3D path planning for flexible needle steering in neurosurgery.
    Hong A; Boehler Q; Moser R; Zemmar A; Stieglitz L; Nelson BJ
    Int J Med Robot; 2019 Aug; 15(4):e1998. PubMed ID: 30945791
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Toward Certifiable Motion Planning for Medical Steerable Needles.
    Fu M; Salzman O; Alterovitz R
    Robot Sci Syst; 2021 Jul; 2021():. PubMed ID: 36312204
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Adaptive Hermite Fractal Tree (AHFT): a novel surgical 3D path planning approach with curvature and heading constraints.
    Pinzi M; Galvan S; Rodriguez Y Baena F
    Int J Comput Assist Radiol Surg; 2019 Apr; 14(4):659-670. PubMed ID: 30790172
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Smooth path planning for a biologically-inspired neurosurgical probe.
    Bano S; Ko SY; Rodriguez y Baena F
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():920-3. PubMed ID: 23366043
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Flexible needle steering for percutaneous therapies.
    Glozman D; Shoham M
    Comput Aided Surg; 2006 Jul; 11(4):194-201. PubMed ID: 17060077
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Path planning for robot-assisted active flexible needle using improved Rapidly-Exploring Random trees.
    Zhao YJ; Joseph FO; Yan K; Datla NV; Zhang YD; Podder TK; Hutapea P; Dicker A; Yu Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():380-3. PubMed ID: 25569976
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Automatic Path-Planning Techniques for Minimally Invasive Stereotactic Neurosurgical Procedures-A Systematic Review.
    Monfaredi R; Concepcion-Gonzalez A; Acosta Julbe J; Fischer E; Hernandez-Herrera G; Cleary K; Oluigbo C
    Sensors (Basel); 2024 Aug; 24(16):. PubMed ID: 39204935
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Robust Path Planning via Learning from Demonstrations for Robotic Catheters in Deformable Environments.
    Li Z; Lambranzi C; Wu D; Segato A; De Marco F; Poorten EV; Dankelman J; Momi E
    IEEE Trans Biomed Eng; 2024 Aug; PP():. PubMed ID: 39208052
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 3-D Path-Following Control for Steerable Needles With Fiber Bragg Gratings in Multi-Core Fibers.
    Donder A; Baena FRY
    IEEE Trans Biomed Eng; 2023 Mar; 70(3):1072-1085. PubMed ID: 36150005
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 3D Motion Planning Algorithms for Steerable Needles Using Inverse Kinematics.
    Duindam V; Xu J; Alterovitz R; Sastry S; Goldberg K
    Int J Rob Res; 2009; 57():535-549. PubMed ID: 21359051
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Robust path planning for flexible needle insertion using Markov decision processes.
    Tan X; Yu P; Lim KB; Chui CK
    Int J Comput Assist Radiol Surg; 2018 Sep; 13(9):1439-1451. PubMed ID: 29752637
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Position-based dynamics simulator of vessel deformations for path planning in robotic endovascular catheterization.
    Li Z; Manzionna E; Monizzi G; Mastrangelo A; Mancini ME; Andreini D; Dankelman J; De Momi E
    Med Eng Phys; 2022 Dec; 110():103920. PubMed ID: 36564143
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.