BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 34882551)

  • 1. Unsupervised Deep Learning for FOD-Based Susceptibility Distortion Correction in Diffusion MRI.
    Qiao Y; Shi Y
    IEEE Trans Med Imaging; 2022 May; 41(5):1165-1175. PubMed ID: 34882551
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Unsupervised Deep Learning for Susceptibility Distortion Correction in Connectome Imaging.
    Qiao Y; Shi Y
    Med Image Comput Comput Assist Interv; 2020; 12267():302-310. PubMed ID: 34458893
    [TBL] [Abstract][Full Text] [Related]  

  • 3. FOD-based registration for susceptibility distortion correction in brainstem connectome imaging.
    Qiao Y; Sun W; Shi Y
    Neuroimage; 2019 Nov; 202():116164. PubMed ID: 31505273
    [TBL] [Abstract][Full Text] [Related]  

  • 4. FOD-Net: A deep learning method for fiber orientation distribution angular super resolution.
    Zeng R; Lv J; Wang H; Zhou L; Barnett M; Calamante F; Wang C
    Med Image Anal; 2022 Jul; 79():102431. PubMed ID: 35397471
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An unsupervised deep learning technique for susceptibility artifact correction in reversed phase-encoding EPI images.
    Duong STM; Phung SL; Bouzerdoum A; Schira MM
    Magn Reson Imaging; 2020 Sep; 71():1-10. PubMed ID: 32407764
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A field-monitoring-based approach for correcting eddy-current-induced artifacts of up to the 2
    Ma R; Akçakaya M; Moeller S; Auerbach E; Uğurbil K; Van de Moortele PF
    Neuroimage; 2020 Aug; 216():116861. PubMed ID: 32305565
    [TBL] [Abstract][Full Text] [Related]  

  • 7. NVAM-Net: deep learning networks for reconstructing high-quality fiber orientation distributions.
    Li J; Ai L; Yao R
    Neuroradiology; 2024 Jul; 66(7):1177-1187. PubMed ID: 38563964
    [TBL] [Abstract][Full Text] [Related]  

  • 8. FD-Net: An unsupervised deep forward-distortion model for susceptibility artifact correction in EPI.
    Zaid Alkilani A; Çukur T; Saritas EU
    Magn Reson Med; 2024 Jan; 91(1):280-296. PubMed ID: 37811681
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Distortion correction of diffusion weighted MRI without reverse phase-encoding scans or field-maps.
    Schilling KG; Blaber J; Hansen C; Cai L; Rogers B; Anderson AW; Smith S; Kanakaraj P; Rex T; Resnick SM; Shafer AT; Cutting LE; Woodward N; Zald D; Landman BA
    PLoS One; 2020; 15(7):e0236418. PubMed ID: 32735601
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Automated Mapping of Residual Distortion Severity in Diffusion MRI.
    Huang S; Zhong L; Shi Y
    Comput Diffus MRI; 2023; 14328():58-69. PubMed ID: 38500569
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DACO: Distortion/artefact correction for diffusion MRI data.
    Hsu YC; Tseng WI
    Neuroimage; 2022 Nov; 262():119571. PubMed ID: 35985619
    [TBL] [Abstract][Full Text] [Related]  

  • 12. FOD-based Registration for Susceptibility Distortion Correction in Connectome Imaging.
    Qiao Y; Sun W; Shi Y
    Connect Neuroimaging (2018); 2018; 11083():11-19. PubMed ID: 31559395
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Correcting Susceptibility Artifacts of MRI Sensors in Brain Scanning: A 3D Anatomy-Guided Deep Learning Approach.
    Duong STM; Phung SL; Bouzerdoum A; Ang SP; Schira MM
    Sensors (Basel); 2021 Mar; 21(7):. PubMed ID: 33810289
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deep flow-net for EPI distortion estimation.
    Zahneisen B; Baeumler K; Zaharchuk G; Fleischmann D; Zeineh M
    Neuroimage; 2020 Aug; 217():116886. PubMed ID: 32389728
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Unsupervised cycle-consistent network using restricted subspace field map for removing susceptibility artifacts in EPI.
    Bao Q; Xie W; Otikovs M; Xia L; Xie H; Liu X; Liu K; Zhang Z; Chen F; Zhou X; Liu C
    Magn Reson Med; 2023 Aug; 90(2):458-472. PubMed ID: 37052369
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deep learning microstructure estimation of developing brains from diffusion MRI: A newborn and fetal study.
    Kebiri H; Gholipour A; Lin R; Vasung L; Calixto C; Krsnik Ž; Karimi D; Bach Cuadra M
    Med Image Anal; 2024 Jul; 95():103186. PubMed ID: 38701657
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surface-driven registration method for the structure-informed segmentation of diffusion MR images.
    Esteban O; Zosso D; Daducci A; Bach-Cuadra M; Ledesma-Carbayo MJ; Thiran JP; Santos A
    Neuroimage; 2016 Oct; 139():450-461. PubMed ID: 27165759
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mitigating transmit-B
    Ma X; Uğurbil K; Wu X
    Magn Reson Med; 2022 Aug; 88(2):727-741. PubMed ID: 35403237
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessment of intraoperative diffusion EPI distortion and its impact on estimation of supratentorial white matter tract positions in pediatric epilepsy surgery.
    Yang JY; Chen J; Alexander B; Schilling K; Kean M; Wray A; Seal M; Maixner W; Beare R
    Neuroimage Clin; 2022; 35():103097. PubMed ID: 35759887
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Generalized Richardson-Lucy (GRL) for analyzing multi-shell diffusion MRI data.
    Guo F; Leemans A; Viergever MA; Dell'Acqua F; De Luca A
    Neuroimage; 2020 Sep; 218():116948. PubMed ID: 32428705
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.