These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 34882552)

  • 1. SPICE Modeling of a High-Power Terfenol-D Transducer Considering Losses and Magnetic Flux Leakage.
    Yang M; Yang X; Wei Y; Zhang Z; Chen Y
    IEEE Trans Ultrason Ferroelectr Freq Control; 2022 Feb; 69(2):812-822. PubMed ID: 34882552
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling of High-Power Tonpilz Terfenol-D Transducer Using Complex Material Parameters.
    Wei Y; Yang X; Chen Y; Zhang Z; Zheng H
    Sensors (Basel); 2022 May; 22(10):. PubMed ID: 35632187
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Finite Element Solutions for Magnetic Field Problems in Terfenol-D Transducers.
    Teng D; Li Y
    Sensors (Basel); 2020 May; 20(10):. PubMed ID: 32429093
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Equivalent circuit for analyzing the transmitting characteristics of multimode Tonpilz transducer.
    Pyo S; Roh Y
    J Acoust Soc Am; 2022 Jun; 151(6):3594. PubMed ID: 35778183
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced magnetoelectric effects in composite of piezoelectric ceramics, rare-earth iron alloys, and shape-optimized nanocrystalline alloys.
    Zhang J; Li P; Wen Y; He W; Yang A; Lu C
    Rev Sci Instrum; 2014 Mar; 85(3):033904. PubMed ID: 24689597
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design of a Wideband Tonpilz Transducer Comprising Non-Uniform Piezoceramic Stacks with Equivalent Circuits.
    Pyo S; Afzal MS; Lim Y; Lee S; Roh Y
    Sensors (Basel); 2021 Apr; 21(8):. PubMed ID: 33920252
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influences of length and position of drive-stacks on the transmitting-voltage-response of the broadband Tonpilz transducer.
    Ji B; Hong L; Lan Y
    J Acoust Soc Am; 2021 Dec; 150(6):4140. PubMed ID: 34972275
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An amplitude prediction model for a giant magnetostrictive ultrasonic transducer.
    Zhou H; Zhang J; Feng P; Yu D; Wu Z
    Ultrasonics; 2020 Dec; 108():106017. PubMed ID: 32690341
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A lumped parameter model of the longitudinal NiMnGa transducer based on piezomagnetic equations.
    Lan Y; Wang H; Lu W; Sun H
    J Acoust Soc Am; 2022 Sep; 152(3):1416. PubMed ID: 36182274
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 3-D numerical modeling for axisymmetrical piezoelectric structures: application to high-frequency ultrasonic transducers.
    Filoux E; Callé S; Lou-Moeller R; Lethiecq M; Levassort F
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 May; 57(5):1188-99. PubMed ID: 20442031
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The EarLens system: new sound transduction methods.
    Perkins R; Fay JP; Rucker P; Rosen M; Olson L; Puria S
    Hear Res; 2010 May; 263(1-2):104-13. PubMed ID: 20116419
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simulation of piezoelectric excitation of guided waves using waveguide finite elements.
    Loveday PW
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Sep; 55(9):2038-45. PubMed ID: 18986900
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Implementation of a direct install 3-pole type EM transducer in round window niche for implantable middle ear hearing aids.
    Shin DH; Lim HG; Jung ES; Wei Q; Seong KW; Lee JH; Lee SH; Cho JH
    Biomed Mater Eng; 2014; 24(6):2503-10. PubMed ID: 25226951
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Research and Fabrication of Broadband Ring Flextensional Underwater Transducer.
    Hu J; Hong L; Yin L; Lan Y; Sun H; Guo R
    Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33672243
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A wideband tonpilz transducer with a transverse through-hole in the radiating head.
    He X; Zhu X; Wu Z; Kang X; Wang Y
    J Acoust Soc Am; 2021 Oct; 150(4):2655. PubMed ID: 34717510
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vivo characterization of piezoelectric transducers for implantable hearing AIDS.
    Javel E; Grant IL; Kroll K
    Otol Neurotol; 2003 Sep; 24(5):784-95. PubMed ID: 14501457
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vibration amplitude and induced temperature limitation of high power air-borne ultrasonic transducers.
    Saffar S; Abdullah A
    Ultrasonics; 2014 Jan; 54(1):168-76. PubMed ID: 23664304
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [An implantable piezoelectric hearing aid transducer for inner ear deafness. II: Clinical implant].
    Leysieffer H; Baumann JW; Müller G; Zenner HP
    HNO; 1997 Oct; 45(10):801-15. PubMed ID: 9445853
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A tri-coil bellows-type round window transducer with improved frequency characteristics for middle-ear implants.
    Shin DH; Seong KW; Puria S; Lee KY; Cho JH
    Hear Res; 2016 Nov; 341():144-154. PubMed ID: 27594098
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Experimental Investigation of the Magnetoelectric Effect in NdFeB-Driven A-Line Shape Terfenol-D/PZT-5A Structures.
    Zhang J; Kang Y; Gao Y; Weng GJ
    Materials (Basel); 2019 Mar; 12(7):. PubMed ID: 30935042
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.