These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Production of curcuminoids from tyrosine by a metabolically engineered Escherichia coli using caffeic acid as an intermediate. Rodrigues JL; Araújo RG; Prather KL; Kluskens LD; Rodrigues LR Biotechnol J; 2015 Apr; 10(4):599-609. PubMed ID: 25641677 [TBL] [Abstract][Full Text] [Related]
4. Cloning and characterization of the ferulic acid catabolic genes of Sphingomonas paucimobilis SYK-6. Masai E; Harada K; Peng X; Kitayama H; Katayama Y; Fukuda M Appl Environ Microbiol; 2002 Sep; 68(9):4416-24. PubMed ID: 12200295 [TBL] [Abstract][Full Text] [Related]
5. Reconstructing curcumin biosynthesis in yeast reveals the implication of caffeoyl-shikimate esterase in phenylpropanoid metabolic flux. Utomo JC; Barrell HB; Kumar R; Smith J; Brant MS; De la Hoz Siegler H; Ro DK Metab Eng; 2024 Mar; 82():286-296. PubMed ID: 38387678 [TBL] [Abstract][Full Text] [Related]
6. Identification and characterization of multiple curcumin synthases from the herb Curcuma longa. Katsuyama Y; Kita T; Horinouchi S FEBS Lett; 2009 Sep; 583(17):2799-803. PubMed ID: 19622354 [TBL] [Abstract][Full Text] [Related]
7. Production of curcuminoids by Escherichia coli carrying an artificial biosynthesis pathway. Katsuyama Y; Matsuzawa M; Funa N; Horinouchi S Microbiology (Reading); 2008 Sep; 154(Pt 9):2620-2628. PubMed ID: 18757796 [TBL] [Abstract][Full Text] [Related]
8. Production of the plant polyketide curcumin in Kan E; Katsuyama Y; Maruyama JI; Tamano K; Koyama Y; Ohnishi Y Biosci Biotechnol Biochem; 2019 Jul; 83(7):1372-1381. PubMed ID: 31023165 [TBL] [Abstract][Full Text] [Related]
9. Biosynthesis of plant-specific stilbene polyketides in metabolically engineered Escherichia coli. Watts KT; Lee PC; Schmidt-Dannert C BMC Biotechnol; 2006 Mar; 6():22. PubMed ID: 16551366 [TBL] [Abstract][Full Text] [Related]
10. Production of dehydrogingerdione derivatives in Escherichia coli by exploiting a curcuminoid synthase from Oryza sativa and a β-oxidation pathway from Saccharomyces cerevisiae. Katsuyama Y; Ohnishi Y; Horinouchi S Chembiochem; 2010 Sep; 11(14):2034-41. PubMed ID: 20836122 [TBL] [Abstract][Full Text] [Related]
11. Curcuminoid biosynthesis by two type III polyketide synthases in the herb Curcuma longa. Katsuyama Y; Kita T; Funa N; Horinouchi S J Biol Chem; 2009 Apr; 284(17):11160-70. PubMed ID: 19258320 [TBL] [Abstract][Full Text] [Related]
12. Requirement of a Functional Flavin Mononucleotide Prenyltransferase for the Activity of a Bacterial Decarboxylase in a Heterologous Muconic Acid Pathway in Saccharomyces cerevisiae. Weber HE; Gottardi M; Brückner C; Oreb M; Boles E; Tripp J Appl Environ Microbiol; 2017 May; 83(10):. PubMed ID: 28283523 [TBL] [Abstract][Full Text] [Related]
13. Design and application of an in vivo reporter assay for phenylalanine ammonia-lyase. Wang S; Zhang S; Zhou T; Zeng J; Zhan J Appl Microbiol Biotechnol; 2013 Sep; 97(17):7877-85. PubMed ID: 23907258 [TBL] [Abstract][Full Text] [Related]
14. A Combinatorial Approach to Optimize the Production of Curcuminoids From Tyrosine in Rodrigues JL; Gomes D; Rodrigues LR Front Bioeng Biotechnol; 2020; 8():59. PubMed ID: 32117938 [TBL] [Abstract][Full Text] [Related]
15. Production of Curcuminoids in Kim EJ; Cha MN; Kim BG; Ahn JH J Microbiol Biotechnol; 2017 May; 27(5):975-982. PubMed ID: 28274102 [TBL] [Abstract][Full Text] [Related]
16. Catabolism of coniferyl aldehyde, ferulic acid and p-coumaric acid by Saccharomyces cerevisiae yields less toxic products. Adeboye PT; Bettiga M; Aldaeus F; Larsson PT; Olsson L Microb Cell Fact; 2015 Sep; 14():149. PubMed ID: 26392265 [TBL] [Abstract][Full Text] [Related]
17. Production of resveratrol from p-coumaric acid in recombinant Saccharomyces cerevisiae expressing 4-coumarate:coenzyme A ligase and stilbene synthase genes. Shin SY; Han NS; Park YC; Kim MD; Seo JH Enzyme Microb Technol; 2011 Jan; 48(1):48-53. PubMed ID: 22112770 [TBL] [Abstract][Full Text] [Related]
18. Heterologous production of raspberry ketone in the wine yeast Saccharomyces cerevisiae via pathway engineering and synthetic enzyme fusion. Lee D; Lloyd ND; Pretorius IS; Borneman AR Microb Cell Fact; 2016 Mar; 15():49. PubMed ID: 26944880 [TBL] [Abstract][Full Text] [Related]
19. The biosynthetic pathway of curcuminoid in turmeric (Curcuma longa) as revealed by 13C-labeled precursors. Kita T; Imai S; Sawada H; Kumagai H; Seto H Biosci Biotechnol Biochem; 2008 Jul; 72(7):1789-98. PubMed ID: 18603793 [TBL] [Abstract][Full Text] [Related]
20. Introducing curcumin biosynthesis in Arabidopsis enhances lignocellulosic biomass processing. Oyarce P; De Meester B; Fonseca F; de Vries L; Goeminne G; Pallidis A; De Rycke R; Tsuji Y; Li Y; Van den Bosch S; Sels B; Ralph J; Vanholme R; Boerjan W Nat Plants; 2019 Feb; 5(2):225-237. PubMed ID: 30692678 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]