These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 34883174)

  • 1. Assessing sectoral water stress states from the demand-side perspective through water footprint dimensions decomposition.
    Allegretti G; Montoya MA; Talamini E
    Sci Total Environ; 2022 Feb; 809():152216. PubMed ID: 34883174
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of key sectors of water resource utilization in China from the perspective of water footprint.
    Deng G; Yue X; Miao L; Lu F
    PLoS One; 2020; 15(6):e0234307. PubMed ID: 32569328
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Water footprint characteristic of less developed water-rich regions: Case of Yunnan, China.
    Qian Y; Dong H; Geng Y; Zhong S; Tian X; Yu Y; Chen Y; Moss DA
    Water Res; 2018 Sep; 141():208-216. PubMed ID: 29793160
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantifying economic-social-environmental trade-offs and synergies of water-supply constraints: An application to the capital region of China.
    Zhao D; Liu J; Sun L; Ye B; Hubacek K; Feng K; Varis O
    Water Res; 2021 May; 195():116986. PubMed ID: 33721677
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Brazilian Environmental-Economic Accounting for Water: A structural decomposition analysis.
    Naspolini GF; Ciasca BS; La Rovere EL; Pereira AO
    J Environ Manage; 2020 Jul; 265():110508. PubMed ID: 32421553
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of China's regional differences in water consumption based on spatial structural decomposition analysis model.
    Long H; Xie R; Gao C; Sun M; Su B
    Sci Total Environ; 2022 Nov; 848():157629. PubMed ID: 35901872
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The gap of water supply-Demand and its driving factors: From water footprint view in Huaihe River Basin.
    An M; Fan L; Huang J; Yang W; Wu H; Wang X; Khanal R
    PLoS One; 2021; 16(3):e0247604. PubMed ID: 33661966
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Measuring the environmental sustainability performance of global supply chains: A multi-regional input-output analysis for carbon, sulphur oxide and water footprints.
    Acquaye A; Feng K; Oppon E; Salhi S; Ibn-Mohammed T; Genovese A; Hubacek K
    J Environ Manage; 2017 Feb; 187():571-585. PubMed ID: 27876164
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Do material efficiency improvements backfire?: Insights from an index decomposition analysis about the link between CO
    Plank B; Eisenmenger N; Schaffartzik A
    J Ind Ecol; 2021 Apr; 25(2):511-522. PubMed ID: 34220182
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimal allocation of physical water resources integrated with virtual water trade in water scarce regions: A case study for Beijing, China.
    Ye Q; Li Y; Zhuo L; Zhang W; Xiong W; Wang C; Wang P
    Water Res; 2018 Feb; 129():264-276. PubMed ID: 29156391
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spillover risk analysis of virtual water trade based on multi-regional input-output model -A case study.
    Zhang W; Fan X; Liu Y; Wang S; Chen B
    J Environ Manage; 2020 Dec; 275():111242. PubMed ID: 32861004
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A scenario analysis-based optimal management of water resources supply and demand balance: A case study of Chengdu, China.
    Yu Y; Zhou T; Zhao R; Li Z; Shen C
    PLoS One; 2022; 17(5):e0267920. PubMed ID: 35576216
    [TBL] [Abstract][Full Text] [Related]  

  • 13. From Water-Use to Water-Scarcity Footprinting in Environmentally Extended Input-Output Analysis.
    Ridoutt BG; Hadjikakou M; Nolan M; Bryan BA
    Environ Sci Technol; 2018 Jun; 52(12):6761-6770. PubMed ID: 29775539
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Driving forces and variation in water footprint before and after the COVID-19 lockdown in Fujian Province of China.
    Yu F; Wang Y; Liu X; Yu J; Zhao D; Deng H; Guo B; Shi R; Wu B; Chen H
    J Clean Prod; 2023 May; 402():136696. PubMed ID: 36942056
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Measuring water ecological carrying capacity with the ecosystem-service-based ecological footprint (ESEF) method: Theory, models and application].
    Jiao WJ; Min QW; Li WH; Fuller AM
    Ying Yong Sheng Tai Xue Bao; 2015 Apr; 26(4):1041-8. PubMed ID: 26259444
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Water transfer infrastructure buffers water scarcity risks to supply chains.
    Sun S; Tang Q; Konar M; Fang C; Liu H; Liu X; Fu G
    Water Res; 2023 Feb; 229():119442. PubMed ID: 36473410
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quality matters: Pollution exacerbates water scarcity and sectoral output risks in China.
    Li J; Yang J; Liu M; Ma Z; Fang W; Bi J
    Water Res; 2022 Oct; 224():119059. PubMed ID: 36126628
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evolution of China's water footprint and virtual water trade: A global trade assessment.
    Tian X; Sarkis J; Geng Y; Qian Y; Gao C; Bleischwitz R; Xu Y
    Environ Int; 2018 Dec; 121(Pt 1):178-188. PubMed ID: 30216770
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of a distributive Three Gorges Project input-output model to investigate the disaggregated sectoral effects of Three Gorges Project.
    Zhai M; Huang G; Li J; Pan X; Su S
    Sci Total Environ; 2021 Nov; 797():148817. PubMed ID: 34303971
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hybrid Analysis of Blue Water Consumption and Water Scarcity Implications at the Global, National, and Basin Levels in an Increasingly Globalized World.
    Wang R; Zimmerman J
    Environ Sci Technol; 2016 May; 50(10):5143-53. PubMed ID: 27101068
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.