These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 3488330)

  • 1. Width and lattice spacing in radially compressed frog skinned muscle fibres at various pH values, magnesium ion concentrations and ionic strengths.
    Umazume Y; Onodera S; Higuchi H
    J Muscle Res Cell Motil; 1986 Jun; 7(3):251-8. PubMed ID: 3488330
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Myosin heads contact with thin filaments in compressed relaxed skinned fibres of frog skeletal muscle.
    Umazume Y; Higuchi H; Takemori S
    J Muscle Res Cell Motil; 1991 Oct; 12(5):466-71. PubMed ID: 1939610
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The stiffness of frog skinned muscle fibres at altered lateral filament spacing.
    Goldman YE; Simmons RM
    J Physiol; 1986 Sep; 378():175-94. PubMed ID: 3491904
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Radial stiffness of frog skinned muscle fibers in relaxed and rigor conditions.
    Umazume Y; Kasuga N
    Biophys J; 1984 Apr; 45(4):783-8. PubMed ID: 6609727
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Length and myofilament spacing-dependent changes in calcium sensitivity of skeletal fibres: effects of pH and ionic strength.
    Martyn DA; Gordon AM
    J Muscle Res Cell Motil; 1988 Oct; 9(5):428-45. PubMed ID: 3215997
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Swelling of skinned muscle fibers of the frog. Experimental observations.
    Godt RE; Maughan DW
    Biophys J; 1977 Aug; 19(2):103-16. PubMed ID: 18220
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of osmolality and ionic strength on the mechanism of Ca2+ release in skinned skeletal muscle fibres of the toad.
    Lamb GD; Stephenson DG; Stienen GJ
    J Physiol; 1993 May; 464():629-48. PubMed ID: 8229822
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Radial forces within muscle fibers in rigor.
    Maughan DW; Godt RE
    J Gen Physiol; 1981 Jan; 77(1):49-64. PubMed ID: 6970793
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lattice shrinkage with increasing resting tension in stretched, single skinned fibers of frog muscle.
    Higuchi H; Umazume Y
    Biophys J; 1986 Sep; 50(3):385-9. PubMed ID: 3489489
    [TBL] [Abstract][Full Text] [Related]  

  • 10. State-dependent radial elasticity of attached cross-bridges in single skinned fibres of rabbit psoas muscle.
    Xu S; Brenner B; Yu LC
    J Physiol; 1993 Jun; 465():749-65. PubMed ID: 7693922
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Steady-state properties of calcium binding to parvalbumins from bullfrog skeletal muscle: effects of Mg2+, pH, ionic strength, and temperature.
    Ogawa Y; Tanokura M
    J Biochem; 1986 Jan; 99(1):73-80. PubMed ID: 3485630
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lattice swelling with the selective digestion of elastic components in single-skinned fibers of frog muscle.
    Higuchi H
    Biophys J; 1987 Jul; 52(1):29-32. PubMed ID: 3496923
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of radial force and radial stiffness in Ca(2+)-activated skinned fibres of the rabbit psoas muscle.
    Brenner B; Yu LC
    J Physiol; 1991 Sep; 441():703-18. PubMed ID: 1816390
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A quantitative analysis of elastic, entropic, electrostatic, and osmotic forces within relaxed skinned muscle fibers.
    Maughan DW; Godt RE
    Biophys Struct Mech; 1980; 7(1):17-40. PubMed ID: 6971660
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Changes in the lateral filament spacing of skinned muscle fibres when cross-bridges attach.
    Matsubara I; Goldman YE; Simmons RM
    J Mol Biol; 1984 Feb; 173(1):15-33. PubMed ID: 6608003
    [TBL] [Abstract][Full Text] [Related]  

  • 16. X-ray diffraction testing for weak-binding crossbridges in relaxed bony fish muscle fibres at low ionic strength.
    Squire JM; Podolsky RJ; Barry JS; Yu LC; Brenner B
    J Struct Biol; 1991 Dec; 107(3):221-6. PubMed ID: 1807355
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intracellular free magnesium in frog skeletal muscle fibres measured with ion-selective micro-electrodes.
    Alvarez-Leefmans FJ; Gamiño SM; Giraldez F; González-Serratos H
    J Physiol; 1986 Sep; 378():461-83. PubMed ID: 2432253
    [TBL] [Abstract][Full Text] [Related]  

  • 18. X-ray diffraction observations of chemically skinned frog skeletal muscle processed by an improved method.
    Magid A; Reedy MK
    Biophys J; 1980 Apr; 30(1):27-40. PubMed ID: 6973364
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stretch and radial compression studies on relaxed skinned muscle fibers of the frog.
    Maughan DW; Godt RE
    Biophys J; 1979 Dec; 28(3):391-402. PubMed ID: 318072
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Origin of unusual interaction between thick and thin filaments in shrunk skinned muscle fibers of frog.
    Tsuchiya T
    Adv Exp Med Biol; 1988; 226():527-39. PubMed ID: 3261492
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.