BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 34883390)

  • 21. Genetic mechanisms governing sporulation initiation in Clostridioides difficile.
    Lee CD; Rizvi A; Edwards AN; DiCandia MA; Vargas Cuebas GG; Monteiro MP; McBride SM
    Curr Opin Microbiol; 2022 Apr; 66():32-38. PubMed ID: 34933206
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Proteomic and genomic characterization of highly infectious Clostridium difficile 630 spores.
    Lawley TD; Croucher NJ; Yu L; Clare S; Sebaihia M; Goulding D; Pickard DJ; Parkhill J; Choudhary J; Dougan G
    J Bacteriol; 2009 Sep; 191(17):5377-86. PubMed ID: 19542279
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Clostridioides difficile canonical L,D-transpeptidases catalyze a novel type of peptidoglycan cross-links and are not required for beta-lactam resistance.
    Galley NF; Greetham D; Alamán-Zárate MG; Williamson MP; Evans CA; Spittal WD; Buddle JE; Freeman J; Davis GL; Dickman MJ; Wilcox MH; Lovering AL; Fagan RP; Mesnage S
    J Biol Chem; 2024 Jan; 300(1):105529. PubMed ID: 38043796
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The Clostridioides difficile Cysteine-Rich Exosporium Morphogenetic Protein, CdeC, Exhibits Self-Assembly Properties That Lead to Organized Inclusion Bodies in Escherichia coli.
    Romero-Rodríguez A; Troncoso-Cotal S; Guerrero-Araya E; Paredes-Sabja D
    mSphere; 2020 Nov; 5(6):. PubMed ID: 33208520
    [No Abstract]   [Full Text] [Related]  

  • 25. Structural and biochemical characterizations of the novel autolysin Acd24020 from Clostridioides difficile and its full-function catalytic domain as a lytic enzyme.
    Sekiya H; Tamai E; Kawasaki J; Murakami K; Kamitori S
    Mol Microbiol; 2021 Apr; 115(4):684-698. PubMed ID: 33140473
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Clostridium difficile spore biology: sporulation, germination, and spore structural proteins.
    Paredes-Sabja D; Shen A; Sorg JA
    Trends Microbiol; 2014 Jul; 22(7):406-16. PubMed ID: 24814671
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Structural and functional analysis of the CspB protease required for Clostridium spore germination.
    Adams CM; Eckenroth BE; Putnam EE; Doublié S; Shen A
    PLoS Pathog; 2013 Feb; 9(2):e1003165. PubMed ID: 23408892
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Inhibition of spores to prevent the recurrence of Clostridioides difficile infection - A possibility or an improbability?
    Chiu CW; Tsai PJ; Lee CC; Ko WC; Hung YP
    J Microbiol Immunol Infect; 2021 Dec; 54(6):1011-1017. PubMed ID: 34229970
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cationic Homopolymers Inhibit Spore and Vegetative Cell Growth of
    Jones JB; Liu L; Rank LA; Wetzel D; Woods EC; Biok N; Anderson SE; Lee MR; Liu R; Huth S; Sandhu BK; Gellman SH; McBride SM
    ACS Infect Dis; 2021 May; 7(5):1236-1247. PubMed ID: 33739823
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Characteristics of the Clostridium difficile cell envelope and its importance in therapeutics.
    Kirk JA; Banerji O; Fagan RP
    Microb Biotechnol; 2017 Jan; 10(1):76-90. PubMed ID: 27311697
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Differential effects of 'resurrecting' Csp pseudoproteases during Clostridioides difficile spore germination.
    Donnelly ML; Forster ER; Rohlfing AE; Shen A
    Biochem J; 2020 Apr; 477(8):1459-1478. PubMed ID: 32242623
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Regulation of Clostridium difficile Spore Formation by the SpoIIQ and SpoIIIA Proteins.
    Fimlaid KA; Jensen O; Donnelly ML; Siegrist MS; Shen A
    PLoS Genet; 2015 Oct; 11(10):e1005562. PubMed ID: 26465937
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Spore Peptidoglycan.
    Popham DL; Bernhards CB
    Microbiol Spectr; 2015 Dec; 3(6):. PubMed ID: 27337277
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Visualization of fidaxomicin association with the exosporium layer of Clostridioides difficile spores.
    Bassères E; Endres BT; Montes-Bravo N; Pérez-Soto N; Rashid T; Lancaster C; Begum K; Alam MJ; Paredes-Sabja D; Garey KW
    Anaerobe; 2021 Jun; 69():102352. PubMed ID: 33640461
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Quantifying bacterial spore germination by single-cell impedance cytometry for assessment of host microbiota susceptibility to Clostridioides difficile infection.
    Moore JH; Salahi A; Honrado C; Warburton C; Warren CA; Swami NS
    Biosens Bioelectron; 2020 Oct; 166():112440. PubMed ID: 32745926
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Diversification of division mechanisms in endospore-forming bacteria revealed by analyses of peptidoglycan synthesis in Clostridioides difficile.
    Shrestha S; Taib N; Gribaldo S; Shen A
    Nat Commun; 2023 Dec; 14(1):7975. PubMed ID: 38042849
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The WalRK Two-Component System Is Essential for Proper Cell Envelope Biogenesis in Clostridioides difficile.
    Müh U; Ellermeier CD; Weiss DS
    J Bacteriol; 2022 Jun; 204(6):e0012122. PubMed ID: 35575581
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Functional analysis of SleC from Clostridium difficile: an essential lytic transglycosylase involved in spore germination.
    Gutelius D; Hokeness K; Logan SM; Reid CW
    Microbiology (Reading); 2014 Jan; 160(Pt 1):209-216. PubMed ID: 24140647
    [TBL] [Abstract][Full Text] [Related]  

  • 39. SleC is essential for germination of Clostridium difficile spores in nutrient-rich medium supplemented with the bile salt taurocholate.
    Burns DA; Heap JT; Minton NP
    J Bacteriol; 2010 Feb; 192(3):657-64. PubMed ID: 19933358
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Characterization of an Endolysin Targeting
    Mondal SI; Akter A; Draper LA; Ross RP; Hill C
    Int J Mol Sci; 2021 May; 22(11):. PubMed ID: 34073633
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.