These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 34883471)

  • 1. CARL: a running recognition algorithm for free-living accelerometer data.
    Davis JJ; Straczkiewicz M; Harezlak J; Gruber AH
    Physiol Meas; 2021 Dec; 42(11):. PubMed ID: 34883471
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hip and Wrist Accelerometer Algorithms for Free-Living Behavior Classification.
    Ellis K; Kerr J; Godbole S; Staudenmayer J; Lanckriet G
    Med Sci Sports Exerc; 2016 May; 48(5):933-40. PubMed ID: 26673126
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Field evaluation of a random forest activity classifier for wrist-worn accelerometer data.
    Pavey TG; Gilson ND; Gomersall SR; Clark B; Trost SG
    J Sci Med Sport; 2017 Jan; 20(1):75-80. PubMed ID: 27372275
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sensor-enabled Activity Class Recognition in Preschoolers: Hip versus Wrist Data.
    Trost SG; Cliff DP; Ahmadi MN; Tuc NV; Hagenbuchner M
    Med Sci Sports Exerc; 2018 Mar; 50(3):634-641. PubMed ID: 29059107
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Validation of automatic wear-time detection algorithms in a free-living setting of wrist-worn and hip-worn ActiGraph GT3X.
    Knaier R; Höchsmann C; Infanger D; Hinrichs T; Schmidt-Trucksäss A
    BMC Public Health; 2019 Feb; 19(1):244. PubMed ID: 30819148
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Physical activity classification using the GENEA wrist-worn accelerometer.
    Zhang S; Rowlands AV; Murray P; Hurst TL
    Med Sci Sports Exerc; 2012 Apr; 44(4):742-8. PubMed ID: 21988935
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Machine learning for activity recognition: hip versus wrist data.
    Trost SG; Zheng Y; Wong WK
    Physiol Meas; 2014 Nov; 35(11):2183-9. PubMed ID: 25340887
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A random forest classifier for the prediction of energy expenditure and type of physical activity from wrist and hip accelerometers.
    Ellis K; Kerr J; Godbole S; Lanckriet G; Wing D; Marshall S
    Physiol Meas; 2014 Nov; 35(11):2191-203. PubMed ID: 25340969
    [TBL] [Abstract][Full Text] [Related]  

  • 9. AccNet24: A deep learning framework for classifying 24-hour activity behaviours from wrist-worn accelerometer data under free-living environments.
    Farrahi V; Muhammad U; Rostami M; Oussalah M
    Int J Med Inform; 2023 Apr; 172():105004. PubMed ID: 36724729
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hip and Wrist-Worn Accelerometer Data Analysis for Toddler Activities.
    Kwon S; Zavos P; Nickele K; Sugianto A; Albert MV
    Int J Environ Res Public Health; 2019 Jul; 16(14):. PubMed ID: 31330889
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of step outputs for waist and wrist accelerometer attachment sites.
    Tudor-Locke C; Barreira TV; Schuna JM
    Med Sci Sports Exerc; 2015 Apr; 47(4):839-42. PubMed ID: 25121517
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identifying bedrest using 24-h waist or wrist accelerometry in adults.
    Tracy JD; Acra S; Chen KY; Buchowski MS
    PLoS One; 2018; 13(3):e0194461. PubMed ID: 29570740
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Validation of open-source step-counting algorithms for wrist-worn tri-axial accelerometers in cardiovascular patients.
    Femiano R; Werner C; Wilhelm M; Eser P
    Gait Posture; 2022 Feb; 92():206-211. PubMed ID: 34864486
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An Activity Recognition Framework Deploying the Random Forest Classifier and A Single Optical Heart Rate Monitoring and Triaxial AccelerometerWrist-Band.
    Mehrang S; Pietilä J; Korhonen I
    Sensors (Basel); 2018 Feb; 18(2):. PubMed ID: 29470385
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Performance of Activity Classification Algorithms in Free-Living Older Adults.
    Sasaki JE; Hickey AM; Staudenmayer JW; John D; Kent JA; Freedson PS
    Med Sci Sports Exerc; 2016 May; 48(5):941-50. PubMed ID: 26673129
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cross-validation and out-of-sample testing of physical activity intensity predictions with a wrist-worn accelerometer.
    Montoye AHK; Westgate BS; Fonley MR; Pfeiffer KA
    J Appl Physiol (1985); 2018 May; 124(5):1284-1293. PubMed ID: 29369742
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessment of wear/nonwear time classification algorithms for triaxial accelerometer.
    Choi L; Ward SC; Schnelle JF; Buchowski MS
    Med Sci Sports Exerc; 2012 Oct; 44(10):2009-16. PubMed ID: 22525772
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Effect of Sensor Placement and Number on Physical Activity Recognition and Energy Expenditure Estimation in Older Adults: Validation Study.
    Davoudi A; Mardini MT; Nelson D; Albinali F; Ranka S; Rashidi P; Manini TM
    JMIR Mhealth Uhealth; 2021 May; 9(5):e23681. PubMed ID: 33938809
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Separating bedtime rest from activity using waist or wrist-worn accelerometers in youth.
    Tracy DJ; Xu Z; Choi L; Acra S; Chen KY; Buchowski MS
    PLoS One; 2014; 9(4):e92512. PubMed ID: 24727999
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of Accelerometry Methods for Estimating Physical Activity.
    Kerr J; Marinac CR; Ellis K; Godbole S; Hipp A; Glanz K; Mitchell J; Laden F; James P; Berrigan D
    Med Sci Sports Exerc; 2017 Mar; 49(3):617-624. PubMed ID: 27755355
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.